Les ondes gravitationnelles détectées 100 ans après la prédiction d’Einstein

LIGO ouvre une nouvelle fenêtre sur l’Univers avec l’observation d’ondes gravitationnelles provenant d’une collision de deux trous noirs.

Cette découverte confirme une prédiction majeure de la théorie de la relativité générale énoncée par Albert Einstein en 1915 et ouvre une toute nouvelle fenêtre sur le cosmos. Les ondes gravitationnelles portent en elles des informations qui ne peuvent pas être obtenues autrement, concernant à la fois leurs origines extraordinaires (des phénomènes violents dans l’Univers) et la nature de la gravitation.

La conclusion des physiciens est que les ondes gravitationnelles détectées ont été produites pendant la dernière fraction de seconde précédant la fusion de deux trous noirs en un trou noir unique, plus massif et en rotation sur lui-même. La possibilité d’une telle collision de deux trous noirs avait été prédite, mais ce phénomène n’avait jamais été observé.

Ces ondes gravitationnelles ont été détectées le 14 septembre 2015, à 11h51, heure de Paris (9h51 GMT), par les deux détecteurs jumeaux de LIGO (Laser Interferometer Gravitational-wave Observatory) situés aux Etats-Unis – à Livingston, en Louisiane, et Hanford, dans l’Etat de Washington. Les observatoires LIGO sont financés par la National Science Foundation (NSF) ; ils ont été conçus et construits par Caltech et le MIT, qui assurent leur fonctionnement.

La découverte, qui fait l’objet d’une publication acceptée par la revue Physical Review Letters, a été réalisée par la collaboration scientifique LIGO (qui inclut la collaboration GEO et l’Australian Consortium for Interferometric Gravitational Astronomy) et la collaboration Virgo, à partir de données provenant des deux détecteurs LIGO. Une centaine de scientifiques travaillant dans six laboratoires associés au CNRS ont contribué à cette découverte, au sein de la collaboration Virgo.

Clin d’œil de l’histoire : c’est 100 ans tout juste après la publication de la théorie de la relativité générale d’Einstein, qu’une équipe internationale vient d’en confirmer l’une des prédictions majeures, en réalisant la première détection directe d’ondes gravitationnelles. Cette découverte se double de la première observation de la « valse » finale de deux trous noirs qui finissent par fusionner.

L’analyse des données a permis aux scientifiques des collaborations LIGO et Virgo d’estimer que les deux trous noirs ont fusionné il y a 1.3 milliard  d’années, et avaient des masses d’environ 29 et 36 fois celle du Soleil. La comparaison des temps d’arrivée des ondes gravitationnelles dans les deux détecteurs (7 millisecondes d’écart) et l’étude des caractéristiques des signaux mesurés par les collaborations LIGO et Virgo ont montré que la source de ces ondes gravitationnelles était probablement située dans l’hémisphère sud. Une localisation plus précise aurait nécessité des détecteurs supplémentaires. L’entrée en service d’Advanced Virgo fin 2016 permettra justement cela.
Selon la théorie de la relativité générale, un couple de trous noirs en orbite l’un autour de l’autre perd de l’énergie sous forme d’ondes gravitationnelles. Les deux astres se rapprochent lentement, un phénomène qui peut durer des milliards d’années avant de s’accélérer brusquement. En une fraction de seconde, les deux trous noirs entrent alors en collision à une vitesse de l’ordre de la moitié de celle de la lumière et fusionnent en un trou noir unique. Celui-ci est plus léger que la somme des deux trous noirs initiaux car une partie de leur masse (ici, l’équivalent de 3 soleils, soit une énergie colossale) s’est convertie en ondes gravitationnelles selon la célèbre formule d’Einstein E=mc2. C’est cette bouffée d’ondes gravitationnelles que les collaborations LIGO et Virgo ont observée.

Détecter un phénomène aussi insaisissable1 que les ondes gravitationnelles aura demandé plus de 50 ans d’efforts de par le monde dans la conception de détecteurs de plus en plus sensibles. Aujourd’hui, par cette première détection directe, les collaborations LIGO et Virgo ouvrent une nouvelle ère pour l’astronomie : les ondes gravitationnelles sont un nouveau messager du cosmos, et le seul qu’émettent certains objets astrophysiques, comme les trous noirs.

Autour de LIGO s’est constituée la collaboration scientifique LIGO (LIGO Scientific Collaboration, LSC), un groupe de plus de 1000 scientifiques travaillant dans des universités aux Etats-Unis et dans 14 autres pays. Au sein de la LSC, plus de 90 universités et instituts de recherche réalisent des développements technologiques pour les détecteurs et analysent les données collectées. La collaboration inclut environ 250 étudiants qui apportent une contribution significative. Le réseau de détecteurs de la LSC comporte les interféromètres LIGO et le détecteur GEO600. L’équipe GEO comprend des chercheurs du Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI), de Leibniz Universität Hannover (en Allemagne), ainsi que des partenaires dans les universités de Glasgow, Cardiff,  Birmingham, et d’autres universités du Royaume-Uni, et à l’Université des îles Baléares en Espagne.

La découverte a été rendue possible par les capacités accrues d’Advanced LIGO, une version grandement améliorée qui accroit la sensibilité des instruments par rapport à la première génération des détecteurs LIGO. Elle a permis une augmentation notable du volume d’Univers sondé – et la découverte des ondes gravitationnelles dès sa première campagne d’observations.

La National Science Foundation des Etats-Unis a financé la plus grande partie d’Advanced LIGO.

Des agences de financement allemande (Max Planck Society), britannique (Science and Technology Facilities Council, STFC) et australienne (Australian Research Council) ont aussi contribué de manière significative au projet. Plusieurs des technologies clés qui ont permis d’améliorer très nettement la sensibilité d’Advanced LIGO ont été développées et testées par la collaboration germano-britannique GEO. Des ressources de calcul significatives ont été allouées au projet par le groupe de calcul Atlas de l’AEI à Hanovre, le laboratoire LIGO, l’université de Syracuse et l’Université du Wisconsin à Milwaukee. Plusieurs universités ont conçu, construit et testé des composants clés d’Advanced LIGO : l’université nationale australienne, l’université d’Adélaïde, l’université de Floride, l’université Stanford, l’université Columbia de New York et l’université d’Etat de Louisiane.

1Lors de l’événement du 14 septembre 2015, la longueur des bras des interféromètres a varié d’un cent-millionième de la taille d’un atome.

( Src – CNRS )

Partagez l'article

 



Articles connexes

Poster un Commentaire

3 Commentaires sur "Les ondes gravitationnelles détectées 100 ans après la prédiction d’Einstein"

Me notifier des
avatar
Trier par:   plus récents | plus anciens | plus de votes
Querogilbert
Invité
OFFRE DE PRET E-mail: Ce message est destiné aux personnes qui ont besoin d’un prêt particulier pour reconstruire leurs vies. Vous êtes à la recherche d’un prêt pour d’augmenter vos activités soit pour un projet ou pour acheter un appartement, mais vous êtes sur la liste noir ou votre dossier a été refusé à la banque.Je suis un particulier je donne des prêts allant de 1.000 à 2.000000 € à toutes les personnes qui est en mesure de remplir les conditions. Mon intérêt est de 2% par an.Si vous avez besoin d’argent pour d’autres raisons, n’hésitez pas à nous contacter… Lire plus »
energiestr
Invité

Si Einstein est bien l’auteur de la théorie permettant de CALCULER les ondes gravitationnelles, il faut citer Poincaré qui dix ans avant a affirmé que la gravité se propageait par des ondes à la vitesse de la lumière !

6ctsimple
Invité

Avec les ondes gravitationnelles, mais comme vous passez par là ce serait sympa de nous dire où vous en êtes avec votre volant d’inertie. J’ai voté pour vous!

wpDiscuz