400 heures de production d’hydrogène à 650 degrés : une première mondiale

400 heures de production d'hydrogène à 650 degrés : une première mondiale

L’hydrogène vert, produit par l’électrolyse de l’eau, est une technologie clé pour une économie de l’hydrogène respectueuse de l’environnement. Son coût de production élevé et les défis techniques liés à sa production à grande échelle ont entravé son adoption généralisée. Une équipe de recherche coréenne a récemment fait un pas significatif pour surmonter ces obstacles.

L’hydrogène vert et ses défis

L’hydrogène vert est produit par une technologie d’électrolyse de l’eau qui utilise l’énergie renouvelable pour séparer l’eau en hydrogène et en oxygène sans émettre de dioxyde de carbone. Le coût de production de l’hydrogène vert est actuellement d’environ 5 dollars par kilogramme, soit deux à trois fois plus élevé que l’hydrogène gris obtenu à partir de gaz naturel.

Pour une utilisation pratique de l’hydrogène vert, une innovation dans la technologie d’électrolyse de l’eau est nécessaire, en particulier pour la Corée où l’utilisation de l’énergie renouvelable est limitée pour des raisons géographiques.

Une nouvelle approche pour l’électrolyse de l’eau

L’équipe de recherche du Dr Kyung Joong Yoon, du Centre de recherche sur les matériaux énergétiques de l’Institut coréen des sciences et de la technologie (KIST), a développé un nanocatalyseur pour l’électrolyse de l’eau à haute température qui peut maintenir une densité de courant élevée de plus de 1A/cm2 pendant une longue période à des températures supérieures à 600 degrés.

L’équipe a identifié les raisons fondamentales du comportement anormal des nanomatériaux à haute température et a réussi à résoudre les problèmes, améliorant ainsi les performances et la stabilité dans les cellules d’électrolyse de l’eau réalistes.

Processus de fabrication et résultats de l’évaluation d’une cellule d’électrolyse de l’eau à haute température avec des nanomatériaux. Crédit : KIST

Vers une production d’hydrogène plus efficace

En appliquant le nanocatalyseur à une cellule d’électrolyse de l’eau à haute température, l’équipe a plus que doublé le taux de production d’hydrogène et a fonctionné pendant plus de 400 heures à 650 degrés sans dégradation. Cette technique a également été appliquée avec succès à une cellule d’électrolyse de l’eau de grande surface, confirmant son fort potentiel pour l’augmentation de l’échelle et l’utilisation commerciale.

En synthèse

Les nouveaux nanomatériaux développés dans cette recherche ont permis d’obtenir à la fois de hautes performances et une stabilité pour la technologie d’électrolyse de l’eau à haute température. Cela pourrait contribuer à réduire le coût de production de l’hydrogène vert, le rendant économiquement compétitif avec l’hydrogène gris à l’avenir.

« Pour la commercialisation, nous prévoyons de développer des techniques de traitement automatisées pour la production de masse en coopération avec les fabricants de cellules industrielles », a conclu le Dr Kyungjoong Yoon.

Pour une meilleure compréhension

Qu’est-ce que l’hydrogène vert ?

L’hydrogène vert est un type d’hydrogène produit par l’électrolyse de l’eau, qui utilise l’énergie renouvelable pour séparer l’eau en hydrogène et en oxygène sans émettre de dioxyde de carbone.

Quels sont les défis de la production d’hydrogène vert ?

Le coût de production de l’hydrogène vert est actuellement élevé, et il existe des défis techniques liés à sa production à grande échelle.

Qu’est-ce qu’un nanocatalyseur ?

Un nanocatalyseur est un catalyseur qui a une taille à l’échelle nanométrique. Ils sont souvent utilisés pour améliorer les performances des électrolyseurs d’eau à basse température.

Qu’a fait l’équipe de recherche du Dr Yoon ?

L’équipe a développé un nanocatalyseur pour l’électrolyse de l’eau à haute température qui peut maintenir une densité de courant élevée pendant une longue période à des températures élevées.

Quels sont les résultats de l’application de ce nanocatalyseur ?

En appliquant le nanocatalyseur à une cellule d’électrolyse de l’eau à haute température, l’équipe a plus que doublé le taux de production d’hydrogène et a fonctionné pendant plus de 400 heures sans dégradation.

Références

Article : “In situ synthesis of extremely small, thermally stable perovskite nanocatalysts for high-temperature electrochemical energy devices” – DOI: 10.1016/j.cej.2023.146924

[ Rédaction ]

Articles connexes