Les cellules solaires flexibles offrent de nombreuses applications potentielles dans l’aérospatiale et l’électronique flexible. Leur faible efficacité de conversion énergétique a par contre limité leur utilisation pratique jusqu’à présent. Une nouvelle méthode de fabrication a permis d’augmenter l’efficacité énergétique des cellules solaires flexibles à base de pérovskite, une classe de composés dotés d’une structure cristalline spécifique facilitant la conversion de l’énergie solaire en électricité.
Les cellules solaires flexibles à base de pérovskite (FPSC) actuelles souffrent d’une efficacité de conversion énergétique inférieure à celle des cellules solaires rigides à base de pérovskite. Cela s’explique par les caractéristiques souples et inhomogènes du matériau de base flexible, le polyéthylène téréphtalate (PET), sur lequel sont construits les films de pérovskite des FPSC.
De plus, les FPSC ont une durabilité moindre par rapport aux cellules solaires rigides utilisant le verre comme substrat de base. Les pores présents dans les substrats des cellules solaires flexibles permettent à l’eau et à l’oxygène d’envahir les matériaux pérovskites, entraînant leur dégradation.
Une technique de fabrication pour améliorer l’efficacité des FPSC
Pour résoudre ces problèmes liés à la technologie actuelle des FPSC, une équipe de scientifiques des matériaux du Laboratoire d’État pour l’exploitation et le contrôle des systèmes électriques de l’Université Tsinghua et du Centre d’excellence en nanosciences du Centre National pour la Nanoscience et la Technologie à Pékin, en Chine, a développé une nouvelle technique de fabrication qui augmente l’efficacité des FPSC, ouvrant la voie à une utilisation de cette technologie à une échelle beaucoup plus large.
Selon Chenyi Yi, professeur associé au laboratoire d’exploitation et de contrôle des réseaux électriques de l’Université Tsinghua et auteur principal de l’article, « augmenter l’efficacité de conversion énergétique des FPSC est crucial pour plusieurs raisons : une efficacité plus élevée rend les FPSC plus compétitives par rapport aux autres technologies de cellules solaires, diminue le coût par watt d’électricité générée et les ressources nécessaires pour produire la même quantité d’énergie électrique, et élargit la gamme d’applications où les FPSC peuvent être utilisées de manière pratique, notamment dans l’aérospatiale et l’électronique flexible où l’espace et le poids sont primordiaux. »
Une méthode de dépôt par bain chimique innovante
Plus précisément, l’équipe a développé une nouvelle méthode de dépôt par bain chimique (CBD) permettant de déposer de l’oxyde d’étain (SnO2) sur un substrat flexible sans nécessiter d’acide fort, auquel de nombreux substrats flexibles sont sensibles. Cette nouvelle technique a permis aux chercheurs de mieux contrôler la croissance de l’oxyde d’étain sur le substrat flexible. L’oxyde d’étain sert de couche de transport d’électrons dans la FPSC, ce qui est essentiel pour l’efficacité de conversion énergétique.
« Cette méthode CBD diffère des recherches précédentes en utilisant du sulfate d’étain (SnSO4) plutôt que du chlorure d’étain (SnCl2) comme précurseur d’étain pour déposer le SnO2, rendant la nouvelle méthode compatible avec les substrats flexibles sensibles aux acides », a déclaré Chenyi Yi.
Amélioration de la durabilité des FPSC
Il est important de noter que la nouvelle méthode de fabrication répond également à certaines préoccupations concernant la durabilité des FPSC.
« Le sulfate SO42- résiduel restant après le CBD à base de SnSO4 bénéficie également à la stabilité des PSC en raison de la forte coordination entre le plomb Pb2+ de la pérovskite et le SO42- du SnO2. Par conséquent, nous pouvons fabriquer du SnO2 de meilleure qualité pour obtenir des FPSC plus efficaces et plus stables », a expliqué Chenyi Yi.
L’équipe a atteint un nouveau record d’efficacité de conversion énergétique pour les FPSC, avec 25,09% atteints et 24,90% certifiés. La durabilité des cellules solaires flexibles à base de SnSO4 a également été démontrée, les cellules conservant 90% de leur efficacité de conversion énergétique après avoir été pliées 10 000 fois. Les cellules solaires flexibles à base de SnSO4 ont également montré une stabilité améliorée à haute température par rapport aux cellules solaires flexibles à base de SnCl2.
Vers une production à grande échelle des FPSC
La nouvelle méthode de fabrication développée par l’équipe de recherche a produit des résultats reproductibles et permet aux fabricants de réutiliser le bain chimique, augmentant ainsi la faisabilité d’une production évolutive des FPSC.
« L’objectif ultime est de faire passer ces FPSC à haute efficacité de l’échelle du laboratoire à la production industrielle, permettant une application commerciale généralisée de cette technologie dans divers domaines, des technologies portables à l’électronique portable en passant par les sources d’énergie aérospatiales et les solutions d’énergie renouvelable à grande échelle », a conclu Chenyi Yi.
Article : « 25% – Efficiency flexible perovskite solar cells via controllable growth of SnO2 » – DOI: 10.23919/IEN.2024.0001