samedi, mai 24, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Chauffer les nanoparticules à 500°C: le futur de la catalyse ?

Chauffer les nanoparticules à 500°C: le futur de la catalyse ?

par La rédaction
8 mars 2024
en Nanotechnologie, Technologie

Dans le domaine de la nanotechnologie, une équipe de l’Université Rice, dirigée par la pionnière Naomi Halas, a récemment mis en lumière une méthode novatrice pour exploiter le potentiel catalytique des nanoparticules d’aluminium. Cette découverte jouerait par exemple un rôle clé dans la transition vers des énergies plus propres.

Les catalyseurs sont des agents qui facilitent et accélèrent les réactions chimiques sans être consommés. Ils sont essentiels dans de nombreux processus industriels, notamment dans la production d’énergies renouvelables. L’équipe de l’Université Rice a découvert que les propriétés catalytiques des nanoparticules d’aluminium peuvent être modifiées en ajustant la structure de la couche d’oxyde qui les recouvre.

Le laboratoire de Naomi Halas a démontré que le traitement thermique des nanoparticules dans différents gaz à haute température altère cette couche d’oxyde, offrant ainsi une nouvelle voie pour personnaliser l’outil catalytique selon les besoins spécifiques de chaque application. Ces applications vont de la production de carburants durables aux réactions basées sur l’eau.

Une Compréhension Approfondie des Nanoparticules d’Aluminium

Les nanoparticules d’aluminium se distinguent par leur capacité à absorber et diffuser la lumière avec une efficacité remarquable, grâce à la résonance plasmonique de surface. Ce phénomène décrit l’oscillation collective des électrons à la surface du métal en réponse à la lumière de longueurs d’onde spécifiques. Ces nanoparticules peuvent ainsi agir comme des antennes optiques à l’échelle nanométrique, ce qui les rend prometteuses pour catalyser des réactions basées sur la lumière.

La moitié supérieure de l’image montre une illustration schématique d’une nanoparticule d’oxyde d’aluminium (à gauche), une image au microscope de la couche d’oxyde recouvrant la surface de la nanoparticule (au milieu) et une représentation des différentes unités dans la composition de la couche d’alumine (à droite). La moitié inférieure illustre l’effet du recuit sur la structure de l’oxyde, qui modifie l’épaisseur et la disposition des atomes, ce qui a pour effet de modifier les propriétés optiques et chimiques de la surface des nanoparticules d’aluminium. Crédit : Aaron Bayles/Rice University

Aaron Bayles, auteur principal de l’étude souligne l’importance de l’aluminium, un métal abondant sur Terre, dans de nombreuses applications structurelles et technologiques. La découverte de la structure de la couche d’oxyde native sur les nanoparticules d’aluminium élimine un obstacle majeur à leur utilisation généralisée.

Articles à explorer

Blackout en Espagne et au Portugal : une opportunité de repenser la prévention et la résilience, vers une transition énergétique soutenable

Blackout en Espagne et au Portugal : une opportunité de repenser la prévention et la résilience, vers une transition énergétique soutenable

19 mai 2025
Norvège : Passage des locomotives diesel à l'électricité

Norvège : Passage des locomotives diesel à l’électricité

18 mai 2025

Des Implications Environnementales et Industrielles Significatives

La recherche publiée dans les Proceedings of the National Academy of Sciences révèle que les traitements thermiques simples, consistant à chauffer les particules jusqu’à 500 degrés Celsius dans différents gaz, peuvent modifier la structure de la couche d’oxyde. Ces changements influencent la manière dont les nanoparticules interagissent avec d’autres molécules ou matériaux, ouvrant la voie à des réactions catalytiques plus efficaces et respectueuses de l’environnement.

Aaron Bayles explique que lors d’une réaction catalytique, les molécules de la substance à transformer interagissent avec la couche d’oxyde d’aluminium plutôt qu’avec le noyau métallique de l’aluminium. Ce noyau nanocristallin est capable d’absorber la lumière très efficacement et de la convertir en énergie, tandis que la couche d’oxyde agit comme un réacteur, transférant cette énergie aux molécules réactives.

Une des conséquences des traitements thermiques est l’amélioration de la capacité des nanoparticules d’aluminium à faciliter la conversion du dioxyde de carbone en monoxyde de carbone et en eau. Cette propriété est particulièrement pertinente pour la production de carburants durables et la réduction du dioxyde de carbone, un enjeu majeur dans la lutte contre le changement climatique.

Naomi Halas est professeur à l’université de Rice et enseigne l’ingénierie électrique et informatique, la chimie, la bio-ingénierie, la physique et l’astronomie, ainsi que la science des matériaux et la nanoingénierie. Crédit : Jeff Fitlow/Rice University

En remplaçant les métaux précieux habituellement utilisés dans les processus catalytiques par de l’aluminium abondant, les chercheurs entrevoient un impact considérable sur l’environnement et l’économie. Aaron Bayles suggère que des matériaux similaires pourraient être améliorés de la même manière, ouvrant ainsi de nouvelles perspectives pour la catalyse.

« Il était relativement facile d’effectuer ces traitements et d’obtenir des changements importants dans le comportement catalytique, ce qui est surprenant car l’oxyde d’aluminium est réputé pour ne pas être réactif ⎯ il est très stable« , a déclaré M. Bayles. « Donc, pour quelque chose qui est un peu plus réactif ⎯ comme l’oxyde de titane ou l’oxyde de cuivre ⎯ on pourrait voir des effets encore plus importants.« 

Légende illustration : Aaron Bayles est un ancien doctorant de l’université Rice, chercheur postdoctoral au laboratoire national des énergies renouvelables et auteur principal d’un article publié dans les Proceedings of the National Academy of Sciences. Crédit : Aaron Bayles/Rice University

Article : « Tailoring the Aluminum nanocrystal surface oxide for all-Aluminum-based antenna-reactor plasmonic photocatalysts » – DOI: 10.1073/pnas.2321852121

Tags: catalyseurelectriciteevaporation
TweetPartagePartagePartageEnvoyer
Article précédent

De l’hydrogène à partir de roches riches en fer : une alternative bas carbone

Article suivant

Conçue pour l’IA, cette puce dépasse les transistors pour offrir d’énormes gains en termes de calcul

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Une nouvelle étude rapproche les batteries qui absorbent les émissions de carbone de la réalité
Batterie

Une nouvelle étude rapproche les batteries qui absorbent les émissions de carbone de la réalité

il y a 5 heures
Une approche de fabrication "à froid" pour produire des batteries de nouvelle génération
Batterie

Une approche de fabrication « à froid » pour produire des batteries de nouvelle génération

il y a 19 heures
Un matériau clé pour l'optique du futur : le titanate de strontium en films minces
Optique

Un matériau clé pour l’optique du futur : le titanate de strontium en films minces

il y a 21 heures
ZEUS : un laser d'une puissance inédite ouvre de nouvelles frontières à la science
Laser

ZEUS : un laser d’une puissance inédite ouvre de nouvelles frontières à la science

il y a 23 heures
Un accélérateur de protons de table alimenté par des lasers universitaires
Laser

Un accélérateur de protons de table alimenté par des lasers universitaires

il y a 2 jours
Milieux poreux : les limites minimales et maximales de la perméabilité
Recherche

Milieux poreux : les limites minimales et maximales de la perméabilité

il y a 3 jours
Plus d'articles
Article suivant
Conçue pour l'IA, cette puce dépasse les transistors pour offrir d'énormes gains en termes de calcul

Conçue pour l'IA, cette puce dépasse les transistors pour offrir d'énormes gains en termes de calcul

De minuscules vers tolèrent les radiations de Tchernobyl

De minuscules vers tolèrent les radiations de Tchernobyl

Une cathode réparable débloquerait le potentiel des batteries solides au lithium-soufre

Une cathode réparable débloquerait le potentiel des batteries solides au lithium-soufre

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme : Amazon partenaire

Articles récents

Une nouvelle étude rapproche les batteries qui absorbent les émissions de carbone de la réalité

Une nouvelle étude rapproche les batteries qui absorbent les émissions de carbone de la réalité

24 mai 2025
L'accès à l’eau potable en situation de crise : un pilier oublié de la résilience énergétique

L’accès à l’eau potable en situation de crise : un pilier oublié de la résilience énergétique

23 mai 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com