Des chimistes modifient la technologie solaire pour produire un gaz à effet de serre moins nocif

Des chimistes modifient la technologie solaire pour produire un gaz à effet de serre moins nocif

Les chercheurs du département de chimie de l’UNC-Chapel Hill explorent des pistes novatrices pour exploiter l’énergie solaire et la convertir en composés à haute énergie, ouvrant ainsi la porte à la production de carburants respectueux de l’environnement. L’approche envisagé pourrait bien être une pièce maîtresse dans le puzzle de la transition énergétique.

Dans leur article intitulé les chercheurs détaillent comment ils utilisent un procédé appelé “terminaison méthyle“. Cette technique consiste à modifier la surface du silicium, un composant essentiel des cellules solaires, à l’aide d’un composé organique simple constitué d’un atome de carbone lié à trois atomes d’hydrogène. L’objectif est d’améliorer les performances du silicium dans la conversion du dioxyde de carbone en monoxyde de carbone en utilisant la lumière du soleil.

Ces travaux, soutenus par le Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE), un pôle d’innovation énergétique financé par le Département de l’Énergie des États-Unis, s’inspirent d’un processus appelé « photosynthèse artificielle ». Celui-ci imite la façon dont les plantes utilisent la lumière du soleil pour convertir le dioxyde de carbone en molécules riches en énergie.

Vers une atténuation de l’impact environnemental du CO2

Le dioxyde de carbone est un gaz à effet de serre majeur contribuant au changement climatique. En le convertissant en monoxyde de carbone, un gaz à effet de serre moins nocif et un élément de base pour des carburants plus complexes, les chercheurs affirment pouvoir potentiellement atténuer l’impact environnemental des émissions de CO2.

Gabriella Bein, première auteure de l’article et doctorante en chimie, souligne l’un des défis de l’énergie solaire : « Elle n’est pas toujours disponible lorsque nous en avons le plus besoin ». Elle ajoute : « Un autre défi est que l’électricité renouvelable, comme celle des panneaux solaires, ne fournit pas directement les matières premières nécessaires à la fabrication de produits chimiques. Notre objectif est de stocker l’énergie solaire sous forme de carburants liquides qui pourront être utilisés ultérieurement. »

Catalyseur moléculaire au ruthénium pour une conversion efficace

L’équipe de recherche a utilisé un catalyseur moléculaire au ruthénium associé à un morceau de silicium chimiquement modifié, appelé photoélectrode. Ce dispositif a facilité la conversion du dioxyde de carbone en monoxyde de carbone en utilisant l’énergie lumineuse, sans produire de sous-produits indésirables tels que l’hydrogène gazeux, rendant ainsi le processus plus efficace pour convertir le CO2 en d’autres substances.

Jillian Dempsey, co-auteure de l’article et professeure distinguée Bowman et Gordon Gray, indique que lors d’expériences menées dans une solution remplie de dioxyde de carbone, ils ont pu produire du monoxyde de carbone avec une efficacité de 87%. Cela signifie que le système utilisant les photo-électrodes en silicium modifié est comparable, voire supérieur, aux systèmes utilisant des électrodes métalliques traditionnelles, comme l’or ou le platine.

Une réduction significative de l’énergie électrique nécessaire

De plus, la photoélectrode en silicium a nécessité 460 millivolts d’énergie électrique en moins pour produire une réaction par rapport à ce qui aurait été nécessaire en utilisant uniquement de l’électricité. Jillian Dempsey qualifie cela de significatif, car le processus utilise la collecte directe de la lumière pour compléter ou compenser l’énergie requise pour conduire la réaction chimique qui convertit le dioxyde de carbone en monoxyde de carbone.

« Ce qui est intéressant, c’est que normalement, les surfaces en silicium produisent de l’hydrogène gazeux au lieu du monoxyde de carbone, ce qui rend plus difficile la production de ce dernier à partir du dioxyde de carbone », explique Jillian Dempsey, également directrice adjointe de CHASE.

« En utilisant cette surface spéciale de silicium à terminaison méthyle, nous avons pu éviter ce problème. La modification de la surface du silicium rend le processus de conversion du CO2 en monoxyde de carbone plus efficace et sélectif, ce qui pourrait être vraiment utile pour fabriquer des carburants liquides à partir de la lumière du soleil à l’avenir. »

Article : “Methyl Termination of p-Type Silicon Enables Selective Photoelectrochemical CO2 Reduction by a Molecular Ruthenium Catalyst” – DOI : 10.1021/acsenergylett.4c00122

Ces travaux, fruit d’une collaboration entre Bein, Dempsey, le professeur Alexander Miller, Eric Assaf (ancien étudiant diplômé du département), Renato Sampaio (chercheur principal), Madison Stewart (étudiante en chimie) et Stephen Tereniak (chercheur principal), s’inscrivent dans le cadre du projet CHASE. Ce consortium, composé de sept institutions différentes et dont le siège est à l’UNC-Chapel Hill, a reçu 40 millions de dollars de financement du Département de l’Énergie en 2020 pour accélérer la recherche fondamentale sur les moyens de produire des carburants à partir de la lumière du soleil.

[ Rédaction ]

         

Articles connexes