Effet NIMS : quand le magnétisme sculpte la chaleur

Effet NIMS : quand le magnétisme sculpte la chaleur

Dans une nouvelle étude, le NIMS a réussi à observer directement l’effet magnéto-Thomson anisotrope, un phénomène qui pourrait ouvrir la voie à de nouvelles fonctionnalités pour le contrôle de l’énergie thermique avec le magnétisme.

Comprendre l’effet magnéto-Thomson anisotrope

Le NIMS (National Institute for Materials Science) a réussi à observer directement l’effet magnéto-Thomson anisotrope, un phénomène dans lequel l’absorption/libération de chaleur proportionnelle à une différence de température appliquée et au courant de charge change anisotropiquement en fonction de la direction de la magnétisation dans les matériaux magnétiques.

Cette recherche est susceptible de mener à un développement supplémentaire de la physique fondamentale et des sciences des matériaux liées à la fusion de la thermoelectricité et de la spintronique.

L’effet Thomson est connu depuis longtemps comme l’un des effets thermoélectriques fondamentaux dans les métaux et les semi-conducteurs, avec les effets Seebeck et Peltier, qui sont les principes de conduite des technologies de conversion thermoélectrique.

Bien que l’influence du magnétisme sur les effets Seebeck et Peltier ait été étudiée pendant de nombreuses années, il n’a pas été clarifié comment l’effet Thomson est affecté par les champs magnétiques et le magnétisme.

Illustration schématique de l’effet magnéto-Thomson anisotrope. Crédit : Ken-ichi Uchida National Institute for Materials Science

Une observation inédite

Cette fois, le NIMS a réussi à observer l’effet magnéto-Thomson anisotrope dans les matériaux magnétiques grâce à des mesures thermiques plus précises. L’effet magnéto-Thomson anisotrope dans les matériaux magnétiques diffère de l’effet magnéto-Thomson conventionnel dans les matériaux non magnétiques, et c’est la première observation directe de ce phénomène inexploré.

L’équipe de recherche du NIMS a utilisé une technique de mesure thermique appelée thermographie de verrouillage pour mesurer précisément la distribution de température générée lorsqu’un courant de charge est appliqué à un alliage ferromagnétique Ni95Pt5 tout en appliquant une différence de température, et a vérifié comment l’effet Thomson change en fonction de la direction de la magnétisation.

Implications et perspectives futures

Cette recherche a clarifié les propriétés fondamentales de l’effet magnéto-Thomson anisotrope et a établi des techniques pour sa mesure quantitative. À l’avenir, nous continuerons à explorer la physique, les matériaux et les fonctionnalités de l’effet magnéto-Thomson anisotrope pour enquêter sur la nouvelle physique causée par l’interaction de la chaleur, de l’électricité et du magnétisme, et pour développer des applications pour les technologies de gestion thermique qui contribueront à améliorer l’efficacité et la conservation de l’énergie dans les appareils électroniques.

En synthèse

La réussite de l’observation directe de l’effet magnéto-Thomson anisotrope par le NIMS marque une étape importante dans la compréhension de l’interaction entre la chaleur, l’électricité et le magnétisme. Cette découverte pourrait ouvrir la voie à de nouvelles applications pour le contrôle de l’énergie thermique, contribuant ainsi à l’amélioration de l’efficacité et de la conservation de l’énergie dans les appareils électroniques.

Pour une meilleure compréhension

Qu’est-ce que l’effet magnéto-Thomson anisotrope ?

C’est un phénomène dans lequel l’absorption/libération de chaleur proportionnelle à une différence de température appliquée et au courant de charge change anisotropiquement en fonction de la direction de la magnétisation dans les matériaux magnétiques.

Quelle est l’importance de cette découverte ?

Cette découverte pourrait ouvrir la voie à de nouvelles applications pour le contrôle de l’énergie thermique, contribuant ainsi à l’amélioration de l’efficacité et de la conservation de l’énergie dans les appareils électroniques.

Quelles sont les prochaines étapes ?

Les chercheurs continueront à explorer la physique, les matériaux et les fonctionnalités de l’effet magnéto-Thomson anisotrope pour enquêter sur la nouvelle physique causée par l’interaction de la chaleur, de l’électricité et du magnétisme.

Références

Article : “Observation of the Anisotropic Magneto-Thomson Effect” – DOI: 10.1103/PhysRevLett.131.206701

[ Rédaction ]

Articles connexes