Électronique de spin froide pour les technologies quantiques

Électronique de spin froide pour les technologies quantiques

L’intersection de la recherche en matériaux avancés et des technologies de pointe ouvre la voie à des innovations significatives dans le domaine de l’électronique cryogénique, essentielle pour le développement des systèmes informatiques de demain. Des efforts collaboratifs récents entre deux instituts de renom, visent à repousser les limites de ce qui est techniquement possible dans ce secteur en pleine effervescence.

L’électronique cryogénique joue un rôle crucial dans le progrès des technologies quantiques et spatiales. Les composants électroniques qui fonctionnent à des températures extrêmement basses sont indispensables pour étendre la durée de fonctionnement des qubits, éléments fondamentaux de l’informatique quantique. Ces conditions cryogéniques sont également essentielles pour garantir la performance optimale des futurs systèmes de calcul quantique.

Le projet CONDOR : une collaboration prometteuse

Depuis le début de l’année, l’Institut Fraunhofer pour les Microsystèmes Photoniques IPMS à Dresde et l’Institut Max Planck de Physique des Microstructures (MSP) à Halle ont uni leurs forces dans le cadre du projet CONDOR. Ce programme de coopération vise à développer des composants cryogéniques novateurs qui permettront la réalisation d’électroniques supraconductrices à faible consommation d’énergie, tant pour les systèmes informatiques supraconducteurs autonomes que pour leur intégration avec les systèmes informatiques quantiques émergents.

Logo du projet “Condor – Dispositifs spintroniques supraconducteurs pour l’électronique cryogénique”

Des expertises complémentaires pour une innovation majeure

Le Professeur Dr. Stuart Parkin de l’Institut Max Planck déclare : « CONDOR combine l’expertise en matériaux et dispositifs spintroniques et supraconducteurs de l’Institut de Physique des Microstructures, avec l’expertise en logique, mémoire et intégration à l’échelle du wafer de 300 mm à Fraunhofer IPMS. »

Dr. Benjamin Lilienthal-Uhlig de Fraunhofer IPMS ajoute : « Le Fraunhofer IPMS et l’Institut Max Planck de Physique des Microstructures ont déjà collaboré avec succès sur le projet RASCAL, où de nouveaux dispositifs de mémoire spintronique fonctionnant à température ambiante ont été développés. Ces résultats constituent une partie importante du projet CONDOR. »

Stuart Parkin, directeur de l’Institut Max Planck de physique des microstructures. MPI de la physique des microstructures | Marco Warmuth

Vers une nouvelle génération de composants cryogéniques

Le projet CONDOR ambitionne de développer un nouveau type d’interrupteur supraconducteur pour les dispositifs logiques et de mémoire cryogéniques. Ce composant, basé sur un fil supraconducteur étroit soumis à une tension de grille, ouvre la voie au développement de transistors à effet de champ supraconducteurs fonctionnant à des tensions compatibles avec la technologie CMOS. Ces transistors cryogéniques serviront à la fois d’éléments logiques et d’interrupteurs pour accéder à des éléments de mémoire magnétique, permettant ainsi la création de mémoires non volatiles cryogéniques à faible consommation d’énergie.

En définitive, le projet CONDOR vise à réaliser des composants basés sur une électronique supraconductrice à faible énergie, utilisables à l’échelle de la plaquette pour des systèmes informatiques supraconducteurs autonomes, ainsi que pour les systèmes informatiques quantiques en émergence.

Légende illustration : Sonde à commande piézoélectrique pour la cryocaractérisation. Crédit : Fraunhofer IPMS

[ Rédaction ]

Articles connexes