samedi, mai 24, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats

Nouveau procédé de production de cellules photovoltaïques à pérovskites

par La rédaction
6 avril 2020
en Recherche, Renouvelable, Solaire, Technologie

La pérovskite semi-conductrice est considérée comme un nouvel espoir de ramener le prix de production des cellules solaires en dessous de celui du silicium utilisé jusqu’à présent. L’Empa développe de nouveaux procédés de fabrication pour rendre les cellules solaires en pérovskite non seulement moins chères, mais aussi plus rapides à produire et adaptées à un usage industriel.

Depuis le développement de la première cellule solaire pérovskite en 2009, son rendement est désormais égal à celui d’une cellule en silicium classique. Cependant, il présentait encore quelques faiblesses au début ; par exemple, en raison de sa structure et des matériaux utilisés, il est très sensible à l’humidité, à l’oxygène, à la chaleur, aux rayons UV et aux contraintes mécaniques. Cela rend la cellule moins durable. Michael Grätzel et Hongwei Han ont trouvé une solution à ce problème en 2014, lorsque les deux chercheurs de l’EPFL ont développé une cellule avec un cadre composé d’oxydes et de carbone. Mais cette idée n’était pas encore commercialisable.

Du moins jusqu’à présent : Frank Nüesch, chef du Département des polymères fonctionnels de l’Empa, et son équipe ont travaillé intensivement ces dernières années à la mise au point de nouveaux procédés de fabrication pour ces cellules solaires afin de les produire non seulement plus rapidement mais aussi à moindre coût. Pour ce faire, les chercheurs ont collaboré avec Solaronix SA, une société basée en Suisse romande, dans le cadre d’un projet de l’Office fédéral de l’énergie (OFEN). Ensemble, ils ont produit une cellule de pérovskite fonctionnelle à l’échelle du laboratoire, d’une surface de 10×10 cm.

Buse à fente au lieu de la sérigraphie

Pour la production de cette nouvelle cellule pérovskite, on utilise le procédé dit de la buse à fente. Ici, la couche de matériau est appliquée sur une couche de verre et ensuite structurée en enlevant l’excès de matériau avec un laser. « Avec le nouveau procédé de revêtement, nous pouvons non seulement revêtir plus rapidement, mais aussi déterminer l’épaisseur des différentes couches de manière plus flexible« , explique M. Nüesch. À l’avenir, le procédé de la buse à fente permettra d’enduire des bandes de plusieurs mètres de long relativement facilement et rapidement. L’augmentation de la vitesse de revêtement est donc aussi l’élément central d’une éventuelle industrialisation de la production de cellules à pérovskites.

Au total, cinq couches de différents matériaux, dont l’oxyde de titane, l’oxyde de zirconium et le graphite, sont nécessaires pour une telle cellule. Alors que dans le procédé de sérigraphie utilisé jusqu’à présent, les couches doivent être séchées et frittées (c’est-à-dire compactées) individuellement – ce qui prend beaucoup de temps et d’énergie – dans le procédé de la buse à fente, toutes les couches peuvent être appliquées directement l’une après l’autre et frittées ensemble. Avec ce nouveau procédé, nous pouvons « imprimer » sept fois plus vite qu’avec la méthode de sérigraphie précédente », explique M. Nüesch. La cellule solaire à pérovskite reçoit sa touche finale en appliquant l’absorbeur en pérovskite par impression jet d’encre dans le « Centre de compétence en matière de revêtements » de l’Empa – ce qu’on appelle l’infiltration. Ici, la pérovskite n’est plus appliquée sur le substrat comme une couche solide, mais s’infiltre à travers toutes les couches inférieures poreuses de la cellule solaire jusqu’à la base.

Articles à explorer

La conception d'un nouveau matériau permet d'obtenir des diodes électroluminescentes pérovskites d'un rouge pur et d'une performance record

La conception d’un nouveau matériau permet d’obtenir des diodes électroluminescentes pérovskites d’un rouge pur et d’une performance record

14 mai 2025
Des cellules solaires organiques repensent l’avenir de l’énergie photovoltaïque

Des panneaux solaires lavables, pliables… et sans plomb : le futur est-il organique ?

2 mai 2025
Coupe transversale des différentes couches de la cellule solaire pérovskite sous le microscope électronique à balayage : Les différentes couches sont très fines et les matériaux poreux ont été « remplis » de pérovskite lors de l’étape finale. Image : Empa

Une coopération réussie

Pour développer ce nouveau procédé, l’équipe de l’Empa a travaillé en étroite collaboration avec les experts de Solaronix. Ils sont à l’origine des « encres » – conductrices, semi-conductrices et isolantes à l’échelle nanométrique – qui servent à imprimer les différentes couches de la cellule solaire. La difficulté pour les chercheurs de l’Empa était de préparer cette encre de manière à ce qu’elle soit adaptée au procédé de la buse à fente. Les différents réglages de l’unité de revêtement, tels que la vitesse de la buse à fente, le débit et la distance entre la buse à fente et le substrat, ont également dû être coordonnés afin d’obtenir un résultat optimal. C’est ce qu’ils ont réussi à faire.

Un autre avantage des cellules solaires en pérovskite produites selon ce nouveau procédé est une durée de vie plus longue par rapport aux précédentes cellules à pérovskite. Dans une prochaine étape, des tests pratiques suivront : fin 2020, les cellules solaires à pérovskites seront montées sur le toit du bâtiment de la NEST sur le campus de l’Empa à Dübendorf, où elles devront faire leurs preuves dans l’utilisation quotidienne.

Legende : La buse à fente applique une couche de carbone sur le substrat de verre. Les cinq couches de la cellule solaire peuvent ainsi être appliquées l’une après l’autre et séchées ensemble. Avec le procédé de sérigraphie classique, chaque couche devait être séchée séparément pendant au moins une heure. Image : Empa

Tags: buse fentecellule solaireperovskitesilicium
TweetPartagePartagePartageEnvoyer
Article précédent

De l’or en nanobarreau pour un stockage de l’information moins énergivore

Article suivant

Énergies renouvelables : presque les 3/4 des ajouts de capacité en 2019 dans le monde

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Une nouvelle batterie liquide pourrait permettre aux foyers australiens d'accéder au stockage solaire
Batterie

Une nouvelle batterie liquide pourrait permettre aux foyers australiens d’accéder au stockage solaire

il y a 5 heures
Une nouvelle étude rapproche les batteries qui absorbent les émissions de carbone de la réalité
Batterie

Une nouvelle étude rapproche les batteries qui absorbent les émissions de carbone de la réalité

il y a 12 heures
Les énergies renouvelables réduisent-elles la production de combustibles fossiles aux États-Unis ?
Renouvelable

Les énergies renouvelables réduisent-elles la production de combustibles fossiles aux États-Unis ?

il y a 1 jour
Une approche de fabrication "à froid" pour produire des batteries de nouvelle génération
Batterie

Une approche de fabrication « à froid » pour produire des batteries de nouvelle génération

il y a 1 jour
Un matériau clé pour l'optique du futur : le titanate de strontium en films minces
Optique

Un matériau clé pour l’optique du futur : le titanate de strontium en films minces

il y a 1 jour
ZEUS : un laser d'une puissance inédite ouvre de nouvelles frontières à la science
Laser

ZEUS : un laser d’une puissance inédite ouvre de nouvelles frontières à la science

il y a 1 jour
Plus d'articles
Article suivant

Énergies renouvelables : presque les 3/4 des ajouts de capacité en 2019 dans le monde

Bientôt des procédés plus verts pour le recyclage des métaux (Chimie séparative)

Des Nissan Leaf pour stocker l’énergie éolienne

Commentaires 1

  1. Atomicboy44 says:
    il y a 5 ans

    « il est très sensible à l’humidité, à l’oxygène, à la chaleur, aux rayons UV et aux contraintes mécaniques. »

    Eh beh, tout ce qu’il ne faut pas pour du solaire !

    « Au total, cinq couches de différents matériaux, dont l’oxyde de titane, l’oxyde de zirconium et le graphite, sont nécessaires pour une telle cellule.  »

    Quels matériaux pour la pérovskite industrielle synthétique ?

    Est-ce que le Zirconium est abondant et bon marché ?
    Même question mais pour le titane ?

    Ça sent fort la pétro-chimie tout ça… pas sûr que vous arroviez a vednre le concept au écolos fanatiques, mais il est vrai qu’ils sont assez béotien dés que vous leur parlez technique et chimie ou physique…

    Dernières questions :
    – Quelle est cout d’eun cellule ? € ou $/m² ?
    – Quelle desnité massique et surfacique en énergie (électrique je suppose) ? kWHe/m² ?

    Répondre

Laisser un commentaire Annuler la réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme : Amazon partenaire

Articles récents

Une nouvelle batterie liquide pourrait permettre aux foyers australiens d'accéder au stockage solaire

Une nouvelle batterie liquide pourrait permettre aux foyers australiens d’accéder au stockage solaire

24 mai 2025
Comment résoudre un goulet d'étranglement pour le captage et la conversion du CO2

Comment résoudre un goulet d’étranglement pour le captage et la conversion du CO2

24 mai 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com