Les matériaux multiferroïques, bien que peu connus du grand public, suscitent un intérêt croissant dans la communauté scientifique en raison de leurs propriétés uniques et de leurs applications potentielles dans divers domaines technologiques.
Depuis des décennies, les scientifiques explorent les matériaux multiferroïques, qui pourraient révolutionner les mémoires informatiques, les capteurs chimiques et les ordinateurs quantiques. Des chercheurs de l’Université du Texas à Austin et de l’Institut Max Planck pour la structure et la dynamique de la matière (MPSD) ont mis en lumière le potentiel du nickel iodide (NiI2), un matériau multiferroïque en couches, pour des dispositifs extrêmement rapides et compacts.
Propriétés uniques des multiferroïques
Les multiferroïques possèdent une propriété spéciale appelée couplage magnétroélectrique, permettant de manipuler les propriétés magnétiques d’un matériau par un champ électrique et vice versa. Les chercheurs ont découvert que le NiI2 présente un couplage magnétroélectrique supérieur à tout autre matériau connu, le positionnant comme un candidat de choix pour les avancées technologiques.
« Révéler ces effets à l’échelle de flocons de nickel iodide atomiquement fins était un défi de taille », a indiqué Frank Gao, chercheur postdoctoral en physique à UT et co-auteur principal de l’article, « mais notre succès représente une avancée significative dans le domaine des multiferroïques. »
La découverte ouvre la voie à des dispositifs magnétroélectriques extrêmement rapides et économes en énergie, y compris des mémoires magnétiques, a ajouté Xinyue Peng, étudiant diplômé et autre co-auteur principal du projet.
Importance des champs électriques et magnétiques
Les champs électriques et magnétiques sont fondamentaux pour notre compréhension du monde et pour les technologies modernes. Dans certains matériaux, les charges électriques et les moments magnétiques atomiques peuvent s’ordonner de manière à former une polarisation électrique ou une magnétisation. Ces matériaux sont connus sous le nom de ferroélectriques ou de ferromagnétiques, selon la quantité ordonnée.
Dans les matériaux exotiques que sont les multiferroïques, les ordres électriques et magnétiques coexistent. Le couplage magnétroélectrique, propriété où un changement dans l’un entraîne un changement dans l’autre, rend ces matériaux attractifs pour des dispositifs plus rapides, plus petits et plus efficaces. Pour que ces dispositifs fonctionnent efficacement, il est crucial de trouver des matériaux avec un couplage magnétroélectrique particulièrement fort, comme décrit dans l’étude sur le NiI2.
Méthodologie de la recherche
Les chercheurs ont excité le matériau avec des impulsions laser ultracourtes dans la gamme des femtosecondes (un millionième de milliardième de seconde) et ont suivi les changements résultants dans les ordres électriques et magnétiques ainsi que le couplage magnétroélectrique via leur impact sur des propriétés optiques spécifiques.
Pour comprendre pourquoi le couplage magnétroélectrique est si fort dans le NiI2, l’équipe a réalisé des calculs approfondis. « Deux facteurs jouent un rôle important ici », a expliqué Emil Viñas Boström du MPSD. « L’un est le fort couplage entre le spin des électrons et le mouvement orbital sur les atomes d’iode — un effet relativiste connu sous le nom de couplage spin-orbite. Le second facteur est la forme particulière de l’ordre magnétique dans le nickel iodide, connue sous le nom de spirale de spin ou hélice de spin. Cet ordre est crucial pour initier l’ordre ferroélectrique et pour la force du couplage magnétroélectrique. »
Applications potentielles
Les matériaux comme le NiI2 avec un grand couplage magnétroélectrique ont une large gamme d’applications potentielles. Parmi elles, des mémoires informatiques magnétiques compactes, économes en énergie et pouvant être stockées et récupérées beaucoup plus rapidement que les mémoires existantes ; des interconnexions dans les plateformes de calcul quantique ; et des capteurs chimiques assurant le contrôle de la qualité et la sécurité des médicaments dans les industries chimique et pharmaceutique.
Les chercheurs espèrent que ces découvertes pourront être utilisées pour identifier d’autres matériaux avec des propriétés magnétroélectriques similaires et que d’autres techniques d’ingénierie des matériaux pourraient éventuellement conduire à une amélioration supplémentaire du couplage magnétroélectrique dans le NiI2.
Article : « Giant chiral magnetoelectric oscillations in a van der Waals multiferroic » – DOI: 10.1038/s41586-024-07678-5
Légende illustration : Lorsque des chercheurs irradient une fine couche d’iodure de nickel avec une impulsion laser ultrarapide, des caractéristiques en forme de tire-bouchon appelées « oscillations magnétoélectriques hélicoïdales chirales » apparaissent. Ces caractéristiques pourraient être utiles pour toute une série d’applications, notamment les mémoires informatiques rapides et compactes. Crédit : Ella Maru Studio