Les chercheurs explorent de nouvelles voies pour transformer la chaleur résiduelle en énergie utile. Une équipe internationale de scientifiques a réalisé une étude approfondie sur les propriétés thermoélectriques de films minces d’arséniure de cadmium de haute qualité, ouvrant des conceptions intéressantes pour l’amélioration de l’efficacité énergétique.
La production de chaleur est omniprésente dans les activités humaines. Une grande partie de l’énergie générée par nos systèmes est perdue sous forme de chaleur, que ce soit dans nos appareils électroménagers, nos moyens de transport, nos usines ou même notre réseau électrique.
Le professeur Bolin Liao, spécialiste en sciences thermiques et énergies renouvelables à l’Université de Californie à Santa Barbara (UCSB), souligne : «La chaleur résiduelle est partout». Il ajoute : «Nos centrales électriques, nos pots d’échappement – il existe de nombreux endroits où nous créons un excès de chaleur résiduelle.»
Actuellement, les possibilités d’utilisation de cette chaleur dissipée restent limitées. Cependant, le professeur Liao et ses collègues de l’UCSB, en collaboration avec des chercheurs de l’Université d’État de l’Ohio et de l’Université de Hong Kong, progressent dans la recherche de solutions pour exploiter cette chaleur.
L’arséniure de cadmium : un matériau prometteur
L’équipe de recherche s’est concentrée sur l’étude de l’arséniure de cadmium (Cd3As2), un semi-métal de Dirac aux propriétés de transport prometteuses. Ce matériau se caractérise notamment par une faible conductivité thermique et une mobilité électronique élevée.
Le professeur Liao précise : «Pour obtenir une efficacité élevée, le matériau doit bien conduire l’électricité, mal conduire la chaleur et générer une tension élevée pour une différence de température donnée». Cette combinaison de propriétés de transport électrique et thermique est idéale, mais selon lui, « très difficile à réaliser en pratique ».
L’arséniure de cadmium présente l’avantage de combiner une bonne conduction électrique et une faible conduction thermique. Cependant, un défi majeur subsiste : en tant que semi-métal, il ne génère qu’une très faible tension de Seebeck.
L’apport des films minces
Grâce à la technique d’épitaxie par jets moléculaires (MBE), le laboratoire de Stemmer est capable de «faire croître», molécule par molécule, des matériaux de haute qualité d’une épaisseur allant de quelques nanomètres à plusieurs micromètres.
Cette approche s’avère particulièrement utile dans le cas de l’arséniure de cadmium, car les propriétés à la surface du matériau diffèrent de celles présentes dans le volume du cristal. Le professeur Liao détaille : «Une caractéristique des isolants topologiques comme celui-ci est qu’en plus des états de conduction électronique à l’intérieur du matériau massif, ils possèdent des canaux de conduction en surface».
L’équipe a créé trois films de haute qualité d’épaisseurs variables : 950 nm, 95 nm et 25 nm. Les résultats ont montré que plus le matériau est mince, plus la sensibilité thermoélectrique (connue sous le nom de coefficient de Seebeck) est élevée, générant une tension plus importante en réponse au gradient de température.
Bien que les effets quantiques observés se produisent à des températures proches du zéro absolu, limitant actuellement l’utilisation des films minces de Cd3As2 pour des applications à température ambiante ou à haute température, le professeur Liao souligne leur potentiel immédiat dans les environnements cryogéniques.
Ces environnements existent dans de nombreuses applications, comme l’aérospatiale, la médecine et l’informatique quantique. «Si vous utilisez un matériau à l’état solide très efficace pour le refroidissement, vous n’aurez pas besoin de réfrigérants dangereux et polluants», conclut-il.
Article : « Extraordinary Thermoelectric Properties of Topological Surface States in Quantum-Confined Cd3As2 Thin Films » – DOI: 10.1002/adma.202311644