La recherche de lasers toujours plus performants et précis mobilise la communauté scientifique depuis des décennies. Les impulsions laser ultra-courtes constituent un outil inestimable pour la recherche et l’industrie, permettant des mesures d’une précision inégalée et des applications novatrices dans le traitement des matériaux. Une équipe de chercheurs suisses a développé un laser capable de produire les impulsions ultra-courtes les plus puissantes jamais obtenues. Cette réalisation élargit le champ des possibilités pour l’exploration de phénomènes physiques à l’échelle atomique et pour l’amélioration de nombreux procédés industriels.
Un record de puissance pour les impulsions laser ultra-courtes
Les chercheurs de l’ETH Zurich, sous la direction de la professeure Ursula Keller de l’Institut d’électronique quantique, ont établi un nouveau record dans le domaine des impulsions laser ultra-courtes. Leur dispositif génère des impulsions d’une puissance moyenne de 550 watts, surpassant de plus de 50% les précédentes performances. Ces impulsions se distinguent non seulement par leur puissance, mais aussi par leur durée extrêmement brève, inférieure à une picoseconde (un millionième de millionième de seconde).
La fréquence de répétition de ces impulsions atteint 5 millions par seconde, avec des pics de puissance culminant à 100 mégawatts. Pour mettre en perspective cette puissance colossale, elle équivaudrait théoriquement à alimenter 100 000 aspirateurs simultanément pendant un bref instant.
L’évolution des lasers à disque à impulsions courtes
Depuis un quart de siècle, l’équipe de la professeure Keller travaille à l’amélioration continue des lasers à disque à impulsions courtes. Dans ces dispositifs, le matériau laser se compose d’un disque cristallin ultrafin, d’une épaisseur de seulement 100 micromètres, contenant des atomes d’ytterbium. Au fil des années, de nombreux défis techniques ont dû être surmontés, notamment des incidents spectaculaires ayant entraîné la destruction de composants internes du laser.
La résolution de ces problèmes a permis d’acquérir de nouvelles connaissances, rendant les lasers à impulsions courtes plus fiables et plus adaptés aux applications industrielles. «La combinaison d’une puissance encore plus élevée et d’un taux d’impulsions de 5,5 mégahertz, que nous avons maintenant atteinte, repose sur deux innovations.» précise Moritz Seidel, doctorant dans le laboratoire de Keller.
La première innovation concerne l’agencement spécifique des miroirs à l’intérieur du laser. Cette configuration permet à la lumière de traverser le disque plusieurs fois avant de quitter le laser par un miroir de couplage. Il ajoute : «Cet arrangement nous permet d’amplifier la lumière de manière extrême sans que le laser ne devienne instable.»
La seconde innovation porte sur l’élément central du laser pulsé : un miroir spécial fabriqué à partir d’un matériau semi-conducteur. Inventé par Ursula Keller il y a trente ans, ce composant est connu sous l’acronyme SESAM (Semiconductor Saturable Absorber Mirror). Contrairement aux miroirs classiques, la réflectivité d’un SESAM dépend de l’intensité de la lumière qui le frappe.
Le rôle essentiel du SESAM dans la génération d’impulsions
Le SESAM joue un rôle déterminant dans la production d’impulsions courtes plutôt que d’un faisceau continu. Les impulsions présentent une intensité plus élevée car l’énergie lumineuse se concentre sur une période plus courte. Pour qu’un laser émette de la lumière, l’intensité lumineuse à l’intérieur doit dépasser un certain seuil. C’est là que le SESAM intervient : il réfléchit la lumière, qui a déjà traversé le disque amplificateur plusieurs fois, de manière particulièrement efficace lorsque l’intensité lumineuse est élevée. En conséquence, le laser passe automatiquement en mode pulsé.
Moritz Seidel souligne : «Des impulsions de puissance comparable à celles que nous avons maintenant obtenues ne pouvaient, jusqu’à présent, être produites qu’en faisant passer des impulsions laser plus faibles à travers plusieurs amplificateurs séparés à l’extérieur du laser.» Cette méthode présentait l’inconvénient d’augmenter le bruit, correspondant à des fluctuations de puissance, ce qui posait des problèmes notamment pour les mesures de précision.
La professeure Keller se montre enthousiaste quant aux perspectives offertes par ces résultats. Elle affiche l’importance du soutien de l’ETH Zurich et du financement fiable du Fonds national suisse dans l’obtention de ces avancées. Les chercheurs espèrent maintenant pouvoir raccourcir encore davantage ces impulsions jusqu’au régime de quelques cycles, ce qui s’avère crucial pour la création d’impulsions attosecondes.
Les impulsions rapides et puissantes rendues possibles par ce nouveau laser pourraient trouver des applications dans de nouveaux peignes de fréquences dans le domaine ultraviolet à rayons X, permettant la conception d’horloges encore plus précises. Ursula Keller évoque même un objectif ambitieux : «Un jour, nous pourrions démontrer que les constantes naturelles ne sont pas si constantes que cela.»
De plus, le rayonnement térahertz, dont la longueur d’onde est beaucoup plus longue que celle de la lumière visible ou infrarouge, peut être créé avec ce laser et utilisé, par exemple, pour tester des matériaux. : «Dans l’ensemble, on peut dire qu’avec nos impulsions laser, nous avons montré que les oscillateurs laser constituent une bonne alternative aux systèmes laser basés sur des amplificateurs et qu’ils permettent des mesures nouvelles et meilleures.» conclut la chercheuse.
Légende illustration : Un coup d’œil à l’intérieur du laser record. L’image montre le disque amplificateur rond, à travers lequel le faisceau laser passe plusieurs fois (point lumineux au centre). (Image : Moritz Seidel / ETH Zurich)
Seidel M, Lang L, Phillips CR, Keller U. Ultrafast 550-W average-power thin-disk laser oscillator, Optica 11, 1368-1375 (2024) doi: 10.1364/OPTICA.529185