L’observation des structures cellulaires à l’échelle nanométrique représente un enjeu considérable pour la recherche en biologie. Les microscopes super-résolution, bien qu’efficaces, demeurent peu accessibles en raison de leur coût prohibitif. Une équipe de l’Institut de technologie du Massachusetts (MIT) a mis au point une approche novatrice permettant d’atteindre une résolution nanométrique avec un microscope optique conventionnel. Cette technique d’expansion des tissus élargit le champ des possibilités pour l’étude détaillée des composants cellulaires, et offre ainsi de nouvelles perspectives aux scientifiques du monde entier.
Une expansion tissulaire révolutionnaire
La microscopie par expansion, inventée en 2015 par l’équipe du professeur Edward Boyden au MIT, repose sur l’incorporation des tissus dans un polymère absorbant. Les protéines assurant la cohésion tissulaire sont ensuite dégradées. L’ajout d’eau provoque le gonflement du gel, écartant les biomolécules les unes des autres.
Initialement, cette technique permettait une expansion de quatre fois, offrant une résolution d’environ 70 nanomètres. En 2017, les chercheurs ont réussi à atteindre une expansion de 20 fois en deux étapes, améliorant considérablement la résolution obtenue.
Dans leur dernière étude, publiée dans Nature Methods, les scientifiques du MIT ont accompli une prouesse remarquable. «Nous avons développé une expansion de 20 fois en une seule étape, ce qui simplifie considérablement le processus», explique Edward Boyden, co-auteur senior de l’étude. Cette avancée rend la technique plus accessible et plus facile à mettre en œuvre dans les laboratoires du monde entier.
Un gel innovant au cœur de la technique
Pour parvenir à une expansion de 20 fois en une seule étape, les chercheurs ont dû mettre au point un gel à la fois extrêmement absorbant et mécaniquement stable. Leur choix s’est porté sur un gel composé de N,N-diméthylacrylamide (DMAA) et d’acrylate de sodium.
Contrairement aux gels d’expansion précédents, celui-ci forme spontanément des liaisons entre les chaînes de polymères, lui conférant des propriétés mécaniques robustes. L’équipe a optimisé la composition du gel et le processus de polymérisation pour permettre une expansion de 20 fois.
«Cette approche peut nécessiter plus de préparation d’échantillons par rapport à d’autres techniques de super-résolution, mais elle est beaucoup plus simple en ce qui concerne le processus d’imagerie réel, en particulier pour l’imagerie 3D», souligne pour sa part Shiwei Wang, l’un des auteurs principaux de l’étude.
Des applications prometteuses en biologie cellulaire
Grâce à cette technique, les chercheurs ont pu observer de minuscules structures au sein des cellules cérébrales, notamment les nanocolonnes synaptiques. Ces amas de protéines, organisés de manière spécifique au niveau des synapses neuronales, jouent un rôle crucial dans la communication entre neurones via la sécrétion de neurotransmetteurs comme la dopamine.
Dans des études sur les cellules cancéreuses, les scientifiques ont également visualisé les microtubules, des structures tubulaires impliquées dans la structure cellulaire et la division cellulaire. Les mitochondries, organites responsables de la production d’énergie, ainsi que l’organisation des complexes des pores nucléaires, ont également été observées avec une précision inédite.
«Cette méthode démocratise l’imagerie. Sans elle, pour voir les choses avec une haute résolution, il faut utiliser des microscopes très coûteux. Ce que cette nouvelle technique permet, c’est de voir des choses qu’on ne pourrait normalement pas voir avec des microscopes standard», met en avant Laura Kiessling, professeure de chimie au MIT et co-auteure de l’étude.
Démocratisation de l’imagerie à haute résolution
Cette technique d’expansion tissulaire en une seule étape offre une résolution d’environ 20 nanomètres, permettant aux scientifiques d’observer les organites à l’intérieur des cellules, ainsi que les amas de protéines. «Une expansion de vingt fois vous amène dans le domaine où opèrent les molécules biologiques. Les éléments constitutifs de la vie sont des choses à l’échelle nanométrique : les biomolécules, les gènes et les produits génétiques», souligne Edward Boyden.
Cette méthode simple et peu coûteuse ouvre la voie à une utilisation généralisée de l’imagerie nanométrique dans les laboratoires de biologie. Elle pourrait accélérer les découvertes dans de nombreux domaines de la recherche biomédicale, de l’étude des maladies neurodégénératives à la compréhension des mécanismes du cancer.
Les chercheurs envisagent que tout laboratoire de biologie puisse utiliser cette technique à faible coût, car elle repose sur des produits chimiques standard et des équipements courants tels que les microscopes confocaux et les sacs à gants, dont la plupart des laboratoires disposent déjà ou peuvent facilement y accéder.
Légende illustration : Grâce à une nouvelle technique qui leur permet de multiplier les tissus par 20 avant de les imager, les chercheurs du MIT ont utilisé un microscope optique classique pour générer des images haute résolution des synapses (à gauche) et des microtubules (à droite). Dans l’image de gauche, les protéines présynaptiques sont marquées en rouge et les protéines postsynaptiques en bleu. Chaque « sandwich » bleu-rouge représente une synapse. Crédit MIT
Article : ‘ »Single-shot 20-fold expansion microscopy »‘ / ( 10.1038/s41592-024-02454-9 ) – Massachusetts Institute of Technology – Publication dans la revue Nature Methods