dimanche, mai 11, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats

Des enzymes bactériennes pour convertir le CO2 en valeur énergétique

par La rédaction
9 février 2015
en Energie

Des chercheurs du CEA[1], du CNRS et d’Aix-Marseille Université décrivent le mécanisme d’activation d’enzymes bactériennes qui transforment naturellement le CO2 en acide formique, composé à forte valeur énergétique.

La description du mécanisme d’activation de ces enzymes, les formiate déshydrogénases[2] (FDHs), représente une avancée importante pour développer, à terme, des biotechnologies appliquées aux énergies renouvelables.

Ces résultats sont publiés dans la revue Nature Communications.

Les formiate déshydrogénases (FDHs) sont des enzymes qui transforment le CO2 en acide formique (CH2O2) chez de nombreuses bactéries. Ce dernier est utilisé pour alimenter certaines piles à combustibles ou pour stocker de l’hydrogène, ce qui fait de lui un composé d’un grand intérêt dans le domaine des énergies renouvelables.

La transformation du CO2 en acide formique requiert des enzymes FDHs sous forme active. Leur activation passe par la fixation d’un atome de soufre (sulfuration) sur un composé, appelé cofacteur à molybdène, qui s’intègrera ensuite dans le site actif des FDHs. Plus précisément, l’atome de soufre est conduit jusqu’au cofacteur par une protéine chaperon[3], dont le mode d’action, déterminant pour activer les FDHs et donc transformer le CO2, était jusqu’alors inconnu.

Des chercheurs du CEA, du CNRS et d’Aix-Marseille Université ont réussi à décrypter le mécanisme de « sulfuration » du cofacteur à molybdène chez la bactérie Escherichia coli grâce à une approche multidisciplinaire associant des techniques de biologie structurale, de biochimie et de biologie moléculaire. D’une part, ce cofacteur est une molécule très fragile, de l’autre, le soufre inorganique est hautement réactif. Dans ce contexte, il a été mis en évidence un mécanisme permettant de coupler le transfert protégé du soufre et la fixation du cofacteur à molybdène sur une même protéine chaperon. Selon le modèle décrit par les chercheurs, le soufre navigue à travers un tunnel traversant le cœur de la protéine chaperon, tunnel qui relie d’un côté la protéine donneuse de soufre et de l’autre, le cofacteur à molybdène. Le cofacteur ainsi soufré peut s’intégrer dans le site actif des FDHs : ces enzymes sont dès lors capables de catalyser la transformation du CO2 en acide formique.

Articles à explorer

Des scientifiques résolvent une énigme vieille de plusieurs décennies dans la conversion du CO2 en carburant

Des scientifiques résolvent une énigme vieille de plusieurs décennies dans la conversion du CO2 en carburant

3 mai 2025
La décroissance impliquerait-elle le retour à l’âge de la bougie ?

La décroissance impliquerait-elle le retour à l’âge de la bougie ?

2 mai 2025

Des enzymes bactériennes pour convertir le CO2 en valeur énergétique

[ Sur cette figure, le soufre produit à partir de L-Cystéine navigue à travers un tunnel traversant la protéine chaperon pour atteindre le cofacteur à molybdène fixé de l’autre côté de la protéine. Une fois le cofacteur à molybdène soufré, celui-ci est disponible pour les FDHs et permet ainsi leur activité. © A. Magalon ]

Ces travaux permettent une meilleure compréhension d’une étape clé dans la production de FDHs sous forme active et offrent de belles perspectives dans le développement d’applications en biotechnologies dans le domaine des énergies renouvelables.

Il existe actuellement plusieurs types de piles à combustibles. Certaines sont composées d’une membrane échangeuse de protons qui permet, à partir d’acide formique et d’oxygène, de créer de l’énergie en rejetant notamment de l’eau et du CO2. On parle de « direct formic acid fuel cell ». Grâce à la réduction du CO2 en acide formique via le rôle clé joué par les formiate déshydrogénases, il serait possible d’alimenter des piles à combustibles et ainsi favoriser l’utilisation d’énergies renouvelables.

Références :
Pascal Arnoux, Christian Ruppelt, Flore Oudouhou, Jérôme Lavergne, Marina I. Siponen, René Toci, Ralf R. Mendel, Florian Bittner, David Pignol, Axel Magalon & Anne Walburger
Sulphur shuttling across a chaperone during molybdenum cofactor maturation – Nature Communications – DOI: 10.1038/ncomms7148


[1] Institut de biologie environnementale et biotechnologie.
[2] Les formiate déshydrogénases sont un ensemble d’enzymes qui catalyse l’oxydation du formiate de dioxyde de carbone.
[3] Protéine dont le rôle est d’assister d’autres protéines pour favoriser leur maturation.

Tags: bacterieCO2enzymestechnologie
TweetPartagePartagePartageEnvoyer
Article précédent

Campus GIANT de Grenoble : GreEn-ER sera à l’image de la ville de demain

Article suivant

La maison de paille en première ligne des constructions durables

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Un pas significatif vers les microsources d'énergie nucléaire durable
Nucléaire

Un pas significatif vers les microsources d’énergie nucléaire durable

il y a 5 jours
Les calculs mettent en évidence la forte attraction entre un proton ou un neutron et un charmonium
Nucléaire

Les calculs mettent en évidence la forte attraction entre un proton ou un neutron et un charmonium

il y a 6 jours
La capacité mondiale d'énergie nucléaire atteindra 494 GW d'ici 2035, grâce aux progrès des réacteurs SMR et au passage à l'énergie propre
Nucléaire

La capacité mondiale d’énergie nucléaire atteindra 494 GW d’ici 2035, grâce aux progrès des réacteurs SMR et au passage à l’énergie propre

il y a 2 semaines
Plus d'infos
Article suivant

La maison de paille en première ligne des constructions durables

"Une technique innovante de traitement de l'eau par ultraviolets"

L'Illinois va prolonger la durée d'exploitation des centrales nucléaires

Commentaires 3

  1. Gofast says:
    il y a 10 ans

    bonjour Alors ça, c’est vraiment une bonne nouvelle ! Même plus besoin du soleil ! Ils sont forts ces chercheurs ! Au fait, c’est comme ça qu’elles font les fourmis ? Ou alors elles ont un autre plan ? Parce que elles aussi, elles sont fortes ! Vive le bio mimétisme ! Comme des bêtes, mais sans honte ! hu hu ! on vit une époque formidable ! Vont bientôt nous faire de la bière avec nos eaux usées ! Tchinn, santé !

    Répondre
  2. marcarmand says:
    il y a 10 ans

    C’est une voie intéressante à explorer: recycler le CO2 sans le relâcher dans l’atmosphère, ou peut-être le capter dans l’atmosphère, et utiliser ce procédé de réduction en acide formique pour stocker l’énergie intermittente des ENR

    Répondre
  3. etehiver says:
    il y a 10 ans

    Il faudrait préciser d’où vient l’énergie pour faire l’acide formique avec du CO2, de fait elle vient du soufre réactif puissant avec des métaux sous terre (Mo, Fe ), au lieu de l’oxygène !! Donc travaux très intéressants en recherche fondamentale, mais inutilisables sauf sur des stocks de soufre purs !!

    Répondre

Laisser un commentaire Annuler la réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme : Amazon partenaire

Articles récents

Les mouvements oculaires prédisent les limites de vitesse dans la perception. Adapté par Martin Rolfs.

Les mouvements oculaires prédisent les limites de vitesse dans la perception

11 mai 2025
Quelle est l'efficacité réelle des pompes à chaleur ?

Quelle est l’efficacité réelle des pompes à chaleur ?

11 mai 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com