mercredi, décembre 10, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
La méthode "Crystal Clear" qui révolutionne l'étude des cristaux

La méthode « Crystal Clear » qui révolutionne l’étude des cristaux

par La rédaction
13 juin 2024
en Recherche, Technologie

Des chercheurs américains ont mis au point une méthode innovante pour visualiser les cristaux en examinant leurs structures internes, semblable à une vision aux rayons X. Cette technique, baptisée « Crystal Clear », combine l’utilisation de particules transparentes et de microscopes avec des lasers, permettant aux scientifiques de voir chaque unité constituant le cristal et de créer des modèles tridimensionnels dynamiques.

Les chercheurs de l’Université de New York ont développé une technique révolutionnaire pour examiner les structures internes des cristaux. Baptisée «Crystal Clear», cette méthode utilise des particules transparentes et des microscopes équipés de lasers. Grâce à cette approche, chaque unité composant le cristal devient visible, permettant la création de modèles tridimensionnels dynamiques.

«C’est une plateforme puissante pour étudier les cristaux,» indique Stefano Sacanna, professeur de chimie à NYU et principal investigateur de l’étude. «Auparavant, en observant un cristal colloïdal au microscope, seule la forme et la structure de la surface étaient perceptibles. Désormais, il est possible de voir à l’intérieur et de connaître la position de chaque unité dans la structure.»

Les cristaux atomiques et leurs défauts

Les cristaux atomiques sont des matériaux solides dont les blocs de construction sont disposés de manière répétitive et ordonnée. Parfois, un atome manque ou est mal placé, créant ainsi un défaut. L’agencement des atomes et des défauts génère différents matériaux cristallins, allant du sel de table aux diamants, et leur confère leurs propriétés spécifiques.

Pour étudier les cristaux, de nombreux scientifiques se tournent vers des cristaux composés de minuscules sphères appelées particules colloïdales plutôt que des atomes. Les particules colloïdales, bien que minuscules – souvent d’un diamètre d’environ un micromètre, soit des dizaines de fois plus petites qu’un cheveu humain – sont beaucoup plus grandes que les atomes et donc plus faciles à observer au microscope.

Une structure transparente

Dans leurs travaux continus pour comprendre la formation des cristaux colloïdaux, les chercheurs ont reconnu la nécessité de voir à l’intérieur de ces structures. Dirigée par Shihao Zang, doctorant dans le laboratoire de Sacanna et premier auteur de l’étude, l’équipe a cherché à créer une méthode pour visualiser les blocs de construction à l’intérieur d’un cristal. Ils ont d’abord développé des particules colloïdales transparentes et ajouté des molécules de colorant pour les marquer, rendant chaque particule discernable sous un microscope grâce à leur fluorescence.

En plus d’observer des cristaux statiques, cette nouvelle technique permet aux scientifiques de visualiser les cristaux en transformation. Par exemple, lors de la fusion des cristaux, comment les particules se réarrangent-elles et les défauts se déplacent-ils ? Dans une expérience où les chercheurs ont fait fondre un cristal ayant la structure du sel minéral chlorure de césium, ils ont été surpris de constater que les défauts restaient stables et ne se déplaçaient pas comme prévu.

Articles à explorer

MicroBooNE ne trouve aucune preuve de l'existence du 'neutrino stérile'

MicroBooNE ne trouve aucune preuve de l’existence du ‘neutrino stérile’

9 décembre 2025
Un cristal courant s'avère idéal pour les technologies lumineuses à basse température

Un cristal courant s’avère idéal pour les technologies lumineuses à basse température

30 octobre 2025

Pour valider leurs expériences sur les cristaux statiques et dynamiques, l’équipe a également utilisé des simulations informatiques pour créer des cristaux aux mêmes caractéristiques, confirmant que la méthode «Crystal Clear» capturait avec précision l’intérieur des cristaux.

«En un sens, nous essayons de rendre nos propres simulations obsolètes avec cette expérience – si l’on peut voir à l’intérieur du cristal, les simulations pourraient ne plus être nécessaires,» plaisante Glen Hocky, professeur adjoint de chimie à NYU, membre du Simons Center for Computational Physical Chemistry à NYU, et co-auteur de l’étude.

Légende illustration : La nouvelle technique permet aux scientifiques de voir chaque particule qui compose les cristaux colloïdaux et de créer des modèles dynamiques en trois dimensions. (Crédit : Shihao Zang)

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: atomiquecristalcrystal clearparticule
Article précédent

Énergies renouvelables : l’Italie vise 69 % de son mix énergétique d’ici 2035

Article suivant

Des chercheurs présentent la première imprimante 3D à puce

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Empreinte écologique réduite : les minerais extraits en eaux profondes (à gauche) peuvent être réduits à l'aide d'un plasma d'hydrogène dans un arc électrique.
Matériaux

Des métaux respectueux du climat issus des minerais des grands fonds marins

il y a 15 heures
Frequency comb converted into light by a cell with Rubidium atoms. (Image authors: Mateusz Mazelanik University of Warsa
Quantique

Un détecteur à atomes de Rydberg conquiert une nouvelle frontière spectrale

il y a 18 heures
Développement de jambes OCTOID remplissant des fonctions de camouflage
Robotique

« OCTOID », un robot mou qui change de couleur et se déplace comme une pieuvre

il y a 2 jours
Le chlore et le potassium nécessaires à la formation des planètes et au maintien de la vie proviennent des étoiles qui explosent.
Recherche

D’où viennent les éléments chimiques ?

il y a 2 jours
Microstructures hydrogel sensibles à la lumière intégrées dans un réseau de collagène. La microstructure au premier plan est il
Recherche

Des microstructures d’hydrogel permettent d’appliquer des forces sur les systèmes cellulaires

il y a 2 jours
Schematic figure of rapid (~100 ps) non-thermal switching of magnetization in antiferromagnetic Mn 3 Sn (to be precise,
Matériaux

Un clin d’œil et vous le manquerez : la commutation du magnétisme dans les antiferromagnétiques

il y a 2 jours
Plus d'articles
Article suivant
Des chercheurs présentent la première imprimante 3D à puce

Des chercheurs présentent la première imprimante 3D à puce

Un microspectromètre de 1 cm3 pour détecter les gaz toxiques

Un microspectromètre de 1 cm3 pour détecter les gaz toxiques

Du sucre pour construire des habitats lunaires : l'ingénieux projet de SINTEF

Du sucre pour construire des habitats lunaires : l'ingénieux projet de SINTEF

Laisser un commentaire Annuler la réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

La comète 3I/Atlas révèle son halo de rayons X, une première mondiale

La comète 3I/Atlas révèle son halo de rayons X grâce au satellite XRISM

10 décembre 2025
SPIE prolonge son contrat de gestion technique du campus d'affaires de Francfort

SPIE prolonge son contrat de gestion technique du campus d’affaires de Francfort

10 décembre 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com