L’énigme de la corrosion enfin résolue grâce à la microscopie électronique

L'énigme de la corrosion enfin résolue grâce à la microscopie électronique

La corrosion, résultat de la rencontre entre la vapeur d’eau et le métal, peut engendrer des problèmes mécaniques nuisibles à la performance d’une machine. Une technique innovante permet désormais de mieux comprendre ces réactions chimiques à l’échelle atomique.

La microscopie électronique environnementale (TEM) est une technique qui permet aux chercheurs d’observer directement les molécules interagissant à la plus petite échelle possible. Cette méthode révolutionne notre compréhension des réactions atomiques.

Le professeur Guangwen Zhou, membre de la faculté de l’Université de Binghamton, utilise cette technique pour étudier les propriétés structurelles et fonctionnelles des métaux, ainsi que le processus de fabrication de l’acier «vert».

Une nouvelle découverte

Dans leur dernière recherche, le professeur Zhou et son équipe ont introduit de la vapeur d’eau sur des échantillons d’aluminium propres et ont observé les réactions de surface.

Ils ont découvert quelque chose qui n’avait jamais été observé auparavant : en plus de la couche d’hydroxyde d’aluminium qui se formait à la surface, une seconde couche amorphe se développait en dessous, indiquant l’existence d’un mécanisme de transport qui diffuse l’oxygène dans le substrat.

« La plupart des études sur la corrosion se concentrent sur la croissance de la couche de passivation et sur la manière dont elle ralentit le processus de corrosion », a déclaré Guangwen Zhou. « En l’examinant à l’échelle atomique, nous pensons pouvoir combler le fossé des connaissances. »

« Si l’on décompose l’eau en oxygène et en hydrogène, lorsqu’on la recombine, ce n’est plus que de l’eau », a-t-il ajouté . « Elle n’est pas contaminée par les combustibles fossiles et ne produit pas de dioxyde de carbone. »

Guangwen Zhou est professeur de génie mécanique au Watson College of Engineering and Applied Science. Crédit photo : Jonathan Cohen.

« J’apprécie énormément le soutien à long terme apporté à cette recherche », a précisé Guangwen Zhou. « Il s’agit d’une question très importante pour les dispositifs ou les systèmes énergétiques, car de nombreux alliages métalliques sont utilisés comme matériaux structurels. »

En synthèse

La compréhension des mécanismes atomiques de la corrosion et de la passivation pourrait non seulement permettre de mieux gérer l’oxydation, mais aussi ouvrir la voie à des solutions d’énergie propre. En effet, comprendre comment les atomes d’hydrogène et d’oxygène d’une molécule d’eau se séparent pour interagir avec les métaux pourrait conduire à des avancées significatives dans ce domaine.

Pour une meilleure compréhension

Qu’est-ce que la microscopie électronique environnementale ?

C’est une technique qui permet d’observer directement les molécules interagissant à la plus petite échelle possible.

Qu’a découvert l’équipe du professeur Zhou ?

Ils ont observé la formation d’une seconde couche amorphe sous la couche d’hydroxyde d’aluminium lors de l’introduction de vapeur d’eau sur des échantillons d’aluminium.

Quelles sont les implications de cette découverte ?

Elle pourrait permettre de mieux gérer l’oxydation et ouvrir la voie à des solutions d’énergie propre.

Références

Légende illustration principale : “Une image de la surface d’aluminium oxydée obtenue par microscopie électronique à transmission montre que le film d’oxyde passivant formé dans la vapeur d’eau est constitué d’une couche interne d’oxyde d’aluminium amorphe et d’une couche externe d’hydroxyde d’aluminium cristallin.”

Zhou, G., Chen, X., Wu, D., Li, C., Ye, S., Patel, S.B., Cai, N., Liu, Z., Shan, W., Wang, G., Hwang, S., Zakharov, D.N., Boscoboinik, J.A. (2023). Atomistic mechanisms of water vapor induced surface passivation. Science Advances. doi/10.1126/sciadv.adh5565

[ Rédaction ]

Articles connexes