L’importance des récepteurs solaires dans les systèmes CSP

L'importance des récepteurs solaires dans les systèmes CSP

Alors que la course à l’énergie renouvelable s’intensifie, un composant des systèmes CSP, le récepteur solaire volumétrique poreux (PVSR), suscite des débats et des recherches acharnées. Quel impact pourrait-il avoir sur notre futur énergétique ?

Les systèmes de production d’énergie solaire concentrée (CSP) ont retenu l’intérêt des experts du domaine. Ces systèmes utilisent des miroirs pour concentrer les rayons du soleil sur un récepteur central. Ce dernier capte l’énergie solaire et la convertit en chaleur, laquelle est ensuite transformée en électricité.

Le récepteur solaire joue un rôle crucial dans ce processus. Il sert à focaliser et à capturer la lumière solaire, agissant comme le cœur de l’appareil. Dès lors, optimiser sa performance est primordial pour augmenter l’efficacité du système.

Les avancées récentes en matière de PVSR

Récemment, une équipe de recherche dirigée par le professeur Ya-Ling He de l’Université Xi’an Jiaotong en Chine a publié une revue exhaustive des progrès et des défis liés aux PVSR atmosphériques et pressurisés.

La revue évoque des décennies de recherches sur les PVSR, détaillant les succès et obstacles rencontrés depuis les années 1980. Elle souligne également les critères permettant d’évaluer la performance des PVSR, tels que la température de l’air en sortie et l’efficacité thermique du système. Malheureusement, il est encore difficile de comparer directement ces critères, ce qui souligne le besoin d’une approche standardisée.

Les défis théoriques et pratiques

Sur le plan théorique, les études se focalisent sur la compréhension précise des flux de fluides et des transferts de chaleur au sein du matériau poreux du récepteur solaire. Deux principales stratégies sont utilisées : les simulations à l’échelle des pores et les simulations par moyennage volumétrique.

Les simulations à l’échelle des pores nécessitent une reconstruction tridimensionnelle détaillée de la structure des matériaux poreux. Elles offrent des perspectives très détaillées, mais sont également coûteuses en termes de calcul. En revanche, les simulations par moyennage volumétrique sont plus simples à mettre en place, mais nécessitent que les paramètres et les équations correspondent précisément au système réel, ce qui n’est pas toujours évident.

En synthèse

Les PVSR constituent un domaine de recherche en constante évolution, offrant des opportunités mais aussi des défis considérables. Leur optimisation s’avère essentielle pour l’avènement de systèmes CSP plus performants et, par extension, pour une transition énergétique réussie.

Pour une meilleure compréhension

Qu’est-ce qu’un PVSR ?

Un récepteur solaire volumétrique poreux est un composant essentiel des systèmes CSP, conçu pour optimiser l’absorption et la conversion de l’énergie solaire.

Quels sont les critères de performance pour un PVSR ?

Les principaux critères sont la température de l’air en sortie et l’efficacité thermique du système.

Pourquoi est-il difficile de comparer les performances ?

En raison de la diversité des conditions de test, une standardisation des méthodes d’évaluation fait défaut.

Quelles sont les principales stratégies de simulation ?

Les simulations à l’échelle des pores et les simulations par moyennage volumétrique.

Quels sont les prochains défis pour les PVSR ?

L’optimisation de la structure poreuse et l’absorption spectrale sélective sont les principaux axes de recherche.

* Leur article sera publié dans le volume 2, numéro 3 de Energy Reviews le 1er septembre 2023.

Légende illustration principale : Les récepteurs solaires volumétriques poreux absorbent de manière volumétrique le rayonnement solaire et permettent une conversion efficace de l’énergie solaire en énergie thermique. Malgré les progrès récents, des défis doivent être relevés pour que leur commercialisation se généralise. Crédit : https://commons.wikimedia.org/w/index.php?curid=21895271

DOI: https://doi.org/10.1016/j.enrev.2023.100035

Authors: Ya-Ling He1,*, Shen Du1, and Sheng Shen2

1Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University

2Department of Mechanical Engineering, Carnegie Mellon University

[ Rédaction ]

Articles connexes