Chaque année, des millions de tonnes de déchets électroniques s’accumulent, posant des problèmes environnementaux et économiques. Une équipe de recherche américaine propose une solution innovante en extrayant l’or de ces déchets pour ensuite le transformer en catalyseur, permettant ainsi de convertir le dioxyde de carbone en matériaux organiques. Cette approche pourrait offrir une réponse à la gestion durable des déchets électroniques.
Une équipe de recherche menée par l’Université de Cornell (USA) a mis au point une méthode pour extraire l’or des déchets électroniques. Par la suite, le précieux métal récupéré sert de catalyseur pour la conversion du dioxyde de carbone (CO2), un gaz à effet de serre, en matériaux organiques. Cette innovation pourrait fournir une utilisation durable pour les quelque 50 millions de tonnes de déchets électroniques qui sont chaque année jetées, dont seulement 20% sont recyclées, selon Amin Zadehnazari, chercheur postdoctoral dans le laboratoire d’Alireza Abbaspourrad, professeur associé en chimie alimentaire et technologie des ingrédients à la Faculté d’agriculture et de sciences de la vie.
Les cadres organiques covalents pour la capture de l’or
Amin Zadehnazari a synthétisé deux types de cadres organiques covalents liés par du vinyle (VCOFs) afin de retirer les ions et les nanoparticules d’or des cartes de circuits dans les appareils électroniques usagés. L’un de ses VCOFs a démontré une capacité à capturer sélectivement 99,9% de l’or, avec une très faible rétention des autres métaux, comme le nickel et le cuivre, présents dans les dispositifs.
«Nous pouvons ensuite utiliser les COFs chargés en or pour convertir le CO2 en produits chimiques utiles», a indiqué le chercheur. «En transformant le CO2 en matériaux à valeur ajoutée, nous réduisons non seulement les exigences de gestion des déchets, mais nous apportons également des avantages à la fois environnementaux et pratiques. C’est une situation gagnant-gagnant pour l’environnement.»
La publication acceptée dans Nature Communications met en lumière les possibilités de réutilisation des déchets électroniques comme une mine d’or potentielle. On estime qu’une tonne de déchets électroniques contient au moins dix fois plus d’or qu’une tonne de minerai d’or. Avec une projection de 80 millions de tonnes de déchets électroniques d’ici 2030, il devient de plus en plus impératif de trouver des moyens de récupérer ce métal précieux.
Des méthodes de récupération respectueuses de l’environnement
Les méthodes traditionnelles de récupération de l’or des déchets électroniques impliquent l’utilisation de produits chimiques nocifs, comme le cyanure, qui posent des risques pour l’environnement. La méthode de Zadehnazari se distingue par son absence de produits chimiques dangereux, utilisant l’adsorption chimique – l’adhésion des particules à une surface.
Les cadres organiques covalents (COFs) sont des matériaux cristallins poreux, connus pour leurs multiples applications potentielles, y compris la détection chimique et le stockage d’énergie. Zadehnazari a synthétisé deux VCOFs, utilisant le tétrathiafulvalène (TTF) et le tétraphényléthylène (TPE) comme blocs de construction. Le TTF-COF a montré une adsorption supérieure de l’or grâce à sa richesse en soufre, pour lequel l’or a une affinité naturelle. Outre sa capacité d’adsorption élevée, le TTF-COF a supporté 16 lavages et réutilisations, avec peu de perte d’efficacité d’adsorption.
Sous une pression ambiante de CO2 à 50 degrés Celsius (122 degrés Fahrenheit), le COF chargé en or convertit efficacement le CO2 en matière organique par carboxylation.
Abbaspourrad souligne que les autres méthodes de récupération de l’or et des autres métaux précieux des déchets électroniques ne sont généralement pas aussi sélectives que celle proposée par Zadehnazari, ce qui conduit à des impuretés. «Connaissant la quantité d’or et d’autres métaux précieux présents dans ces types d’appareils électroniques, pouvoir les récupérer de manière à capturer sélectivement le métal voulu – en l’occurrence, l’or – est très important,» a-t-il mentionné.
Légende illustration : amoncellement des cartes électroniques
Article : « Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation » – DOI : s41467-024-55156-3
Source : Université de Cornell