Quand la lumière et les électrons s’unissent pour la science

Quand la lumière et les électrons s'unissent pour la science

L’optique non linéaire, un domaine d’étude fascinant qui explore le comportement souvent imprévisible de la lumière lorsqu’elle traverse un matériau, est au cœur des avancées technologiques et scientifiques. Une équipe de chercheurs de l’EPFL et de l’Institut Max Planck a récemment intégré ce phénomène dans un microscope électronique à transmission (TEM), ouvrant ainsi de nouvelles perspectives dans le domaine.

Le comportement de la lumière lorsqu’elle traverse un matériau peut souvent être imprévisible. Ce phénomène est l’objet d’un champ d’étude entier appelé optique non linéaire, qui est désormais essentiel pour les avancées technologiques et scientifiques, allant du développement de lasers et de la métrologie des fréquences optiques, à l’astronomie des ondes gravitationnelles et à la science de l’information quantique.

Ces dernières années, l’optique non linéaire a été appliquée dans le traitement des signaux optiques, les télécommunications, la détection et la télémétrie par la lumière. Toutes ces applications impliquent la miniaturisation de dispositifs qui manipulent la lumière de manière non linéaire sur une petite puce, permettant des interactions lumineuses complexes à l’échelle de la puce.

L’intégration de l’optique non linéaire dans la microscopie

Une équipe de scientifiques de l’EPFL et de l’Institut Max Planck a intégré les phénomènes d’optique non linéaire dans un microscope électronique à transmission (TEM), un type de microscope qui utilise des électrons pour l’imagerie au lieu de la lumière.

L’étude a été dirigée par le professeur Tobias J. Kippenberg de l’EPFL et le professeur Claus Ropers, directeur de l’Institut Max Planck pour les sciences multidisciplinaires.

Au cœur de l’étude se trouvent les « solitons de Kerr », des ondes de lumière qui conservent leur forme et leur énergie lorsqu’elles se déplacent à travers un matériau, comme une vague de surf parfaitement formée qui traverse l’océan.

Schéma de l’expérience. Des motifs lumineux spatiotemporels non linéaires dans un microrésonateur à base de puce photonique modulent le spectre d’un faisceau d’électrons libres dans un microscope électronique à transmission. (Image : Yang et al.)

Cette étude a utilisé un type particulier de solitons de Kerr appelés “dissipatifs”, qui sont des impulsions de lumière localisées et stables qui durent des dizaines de femtosecondes (un billionième de seconde) et se forment spontanément dans le micro-résonateur. Les solitons de Kerr dissipatifs peuvent également interagir avec les électrons, ce qui les a rendus cruciaux pour cette étude.

En synthèse

Les chercheurs ont formé des solitons de Kerr dissipatifs à l’intérieur d’un micro-résonateur photonique, une petite puce qui piège et fait circuler la lumière à l’intérieur d’une cavité réfléchissante, créant les conditions parfaites pour ces ondes. Cette approche a démontré le couplage entre les électrons libres et les solitons de Kerr dissipatifs, ce qui a permis aux chercheurs de sonder la dynamique des solitons dans la cavité du micro-résonateur et de réaliser une modulation ultra-rapide des faisceaux d’électrons.

Pour une meilleure compréhension

Qu’est-ce que l’optique non linéaire ?

L’optique non linéaire est un domaine d’étude qui explore le comportement souvent imprévisible de la lumière lorsqu’elle traverse un matériau.

Qu’est-ce qu’un soliton de Kerr ?

Un soliton de Kerr est une onde de lumière qui conserve sa forme et son énergie lorsqu’elle se déplace à travers un matériau.

Qu’est-ce qu’un microscope électronique à transmission (TEM) ?

Un TEM est un type de microscope qui utilise des électrons pour l’imagerie au lieu de la lumière.

Qu’est-ce qu’un micro-résonateur photonique ?

Un micro-résonateur photonique est une petite puce qui piège et fait circuler la lumière à l’intérieur d’une cavité réfléchissante.

Quels sont les avantages de l’utilisation des solitons de Kerr dans la microscopie électronique ?

L’utilisation des solitons de Kerr permet une modulation ultra-rapide des faisceaux d’électrons, ouvrant de nouvelles perspectives dans le domaine de la microscopie électronique.

Références

Légende illustration principale : Puce photonique utilisée dans cette étude, montée sur un porte-échantillon de microscope électronique à transmission et emballée avec des fibres optiques. (Image : Yang et al.)

Article : “Free-electron interaction with nonlinear optical states in microresonators” – DOI: 10.1126/science.adk2489

[ Rédaction ]

Articles connexes