Qubits d’arsenic : la nouvelle piste pour l’informatique quantique

Qubits d'arsenic : la nouvelle piste pour l'informatique quantique

Des chercheurs britanniques ont franchi une étape cruciale dans la fabrication de ordinateurs quantiques, en développant un processus permettant de positionner des atomes uniques dans un réseau de silicium avec une précision proche de 100%. Cette avancée pourrait permettre de concevoir des ordinateurs quantiques capables de résoudre les problèmes les plus complexes, bien que des défis d’ingénierie substantiels doivent encore être surmontés pour concrétiser cette ambition.

Selon une nouvelle étude publiée dans Advanced Materials, des ingénieurs et physiciens de l’UCL ont mis au point un processus de fabrication permettant de positionner des atomes uniques dans un réseau avec un taux d’échec proche de zéro. Il s’agit de la première tentative réussie de positionner de manière fiable des atomes uniques dans un réseau depuis que l’idée a été proposée il y a 25 ans.

La précision proche de 100% et la possibilité de passer à l’échelle de cette approche soulèvent la possibilité de construire un ordinateur quantique capable de s’attaquer aux problèmes les plus complexes du monde, bien que des défis d’ingénierie substantiels doivent encore être surmontés pour concrétiser cette ambition.

En théorie, l’informatique quantique a le potentiel de résoudre des problèmes complexes que les ordinateurs «classiques» binaires à base de transistors ne pourront jamais résoudre. Une façon de créer les portes d’un ordinateur quantique universel, appelées qubits (bits quantiques), consiste à placer des atomes uniques dans du silicium, refroidis à des températures extrêmement basses pour maintenir leurs propriétés quantiques stables.

Ces qubits peuvent ensuite être manipulés avec des signaux électriques et magnétiques pour traiter l’information, de la même manière qu’un transistor binaire dans un ordinateur classique est manipulé pour produire un zéro ou un un. Cela permet à l’ordinateur d’exploiter la puissance de la mécanique quantique, les lois profondes de la physique qui déterminent le fonctionnement de l’univers, notamment des phénomènes tels que la superposition ou l’intrication quantique.

Dans cette étude, les chercheurs de l’UCL ont émis l’hypothèse que l’arsenic pourrait être un meilleur matériau que le phosphore pour atteindre le faible taux d’échec nécessaire à la construction d’un ordinateur quantique. Ils ont utilisé un microscope capable d’identifier et de manipuler des atomes uniques pour insérer précisément des atomes d’arsenic dans un cristal de silicium.

Ils ont ensuite répété ce processus pour construire un réseau 2×2 d’atomes d’arsenic uniques, prêts à devenir des qubits. Selon le Dr Taylor Stock, premier auteur de l’étude, « une fabrication fiable et précise à l’échelle atomique pourrait être utilisée pour construire un ordinateur quantique évolutif en silicium ».

Actuellement, la méthode développée dans l’étude nécessite de positionner chaque atome à la main un par un, ce qui prend plusieurs minutes. Théoriquement, ce processus peut être répété indéfiniment, mais en pratique, il sera nécessaire d’automatiser et d’industrialiser le processus afin de construire un ordinateur quantique universel, ce qui implique de créer des réseaux de millions, voire de milliards de qubits.

Selon le professeur Neil Curson, auteur principal de l’étude, « la capacité de placer des atomes dans le silicium avec une précision quasi parfaite et d’une manière que nous pouvons faire évoluer est une étape importante pour le domaine de l’informatique quantique, la première fois que nous avons démontré un moyen d’atteindre la précision et l’échelle requises ».

Légende illustration : Taylor Stock chargeant un échantillon dans le microscope à effet tunnel (STM), utilisé pour la fabrication à l’échelle atomique. Crédit ( Agnese Abrusci/UCL ).

Article : “Single-Atom Control of Arsenic Incorporation in Silicon for High-Yield Artificial Lattice Fabrication” – DOI: 10.1002/adma.202312282

[ Rédaction ]

Articles connexes