MME2026 728x90
lundi, février 9, 2026
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Qu'est-ce qui rend le silicium si spécial ? Nouvelles découvertes en vue

Qu’est-ce qui rend le silicium si spécial ? Nouvelles découvertes en vue

par La rédaction
25 août 2023
en Recherche, Technologie

Le silicium est devenu l’un des matériaux fonctionnels les plus répandus de notre époque, soutenant des technologies allant des microélectroniques aux cellules solaires. Les transistors en silicium permettent des applications informatiques diverses, et les photovoltaïques en silicium sont la technologie de cellules solaires la plus utilisée à ce jour.

Les chiffres sont impressionnants : près de 50% de la nouvelle capacité de génération électrique en 2022 provenait des cellules solaires, et le silicium détient 95% de parts de marché.

Les mystères persistants du silicium

Malgré son importance indiscutable dans notre mode de vie moderne, le silicium cache encore de nombreux secrets concernant ses propriétés physiques fondamentales. Dans les dispositifs à semi-conducteurs, la fonctionnalité du matériau provient de la motion et des interactions de particules subatomiques. Cependant, ces électrons et trous peuvent interagir de manière indésirable, limitant ainsi l’efficacité des dispositifs.

Un mécanisme de perte survient lorsque ces porteurs recombines et convertissent leur énergie en chaleur en interagissant avec un défaut dans le matériau. L’une de ces interactions, connue sous le nom de recombinaison Auger-Meitner (AMR), reste un mystère pour les chercheurs malgré des décennies de recherches.

Une avancée majeure dans la compréhension de l’AMR

Avec la mise en place d’une nouvelle méthodologie de calcul pour calculer les taux d’AMR, le Dr. Kyle Bushick et le Prof. Emmanouil Kioupakis de l’Université du Michigan ont fourni la première caractérisation complète de ce processus important dans le silicium. Cette approche computationnelle est essentielle pour comprendre pleinement le mécanisme AMR, un processus qui ne dégage pas de lumière et donc difficile à étudier en laboratoire.

En utilisant les ressources de calcul de pointe au National Energy Research Scientific Computing Center (NERSC), Bushick et Kioupakis ont pu effectuer les calculs de l’AMR dans le silicium, offrant des aperçus inédits du comportement du matériau au niveau atomique.

Les permutations de l’AMR : un défi à comprendre

L’une des raisons pour lesquelles le processus AMR dans le silicium n’a pas été pleinement compris est sa complexité. L’AMR peut être directe ou assistée par des phonons, rendant son analyse plus difficile. Grâce aux calculs prédictifs atomistiques, chaque composante peut être calculée et caractérisée individuellement, permettant d’adresser de nombreuses questions sans réponse sur l’AMR dans le silicium.

Importance de l’interaction électron-phonon

Dans leur rapport publié dans Physical Review Letters, Bushick et Kioupakis élucident l’importance du processus AMR assisté par phonon dans le silicium.

« Nous avons découvert que les interactions électron-phonon représentent non seulement l’intégralité du processus hhe, ce qui avait été supposé dans des travaux précédents, mais aussi une part significative du processus eeh, un sujet de débat non résolu dans la littérature », déclare Bushick. Ils soulignent également une voie potentielle pour modifier l’AMR dans le silicium en appliquant une contrainte au matériau, une conclusion rendue possible par leur méthodologie nouvellement mise en place.

En synthèse

La recherche sur le silicium continue de révéler ses mystères et ses complexités. Grâce à une nouvelle méthodologie de calcul, des chercheurs ont pu élucider certains des mécanismes qui étaient restés inexpliqués. Ces découvertes ouvrent la voie à de nouvelles solutions pour réduire l’impact de l’AMR sur l’efficacité des dispositifs et améliorent notre compréhension de ce matériau essentiel.

Pour une meilleure compréhension

Qu’est-ce que le silicium et pourquoi est-il important ?

Le silicium est un élément chimique utilisé dans une variété de technologies, y compris les microélectroniques et les cellules solaires. Sa prédominance en fait un sujet d’étude essentiel.

Qu’est-ce que la recombinaison Auger-Meitner (AMR) ?

L’AMR est une interaction complexe entre électrons et trous dans un semi-conducteur, et comprendre ce mécanisme est vital pour améliorer l’efficacité des dispositifs.

Comment cette nouvelle étude contribue-t-elle à la compréhension de l’AMR ?

En utilisant une méthodologie de calcul innovante, les chercheurs ont pu caractériser le processus AMR dans le silicium, offrant de nouvelles perspectives sur ce mécanisme.

Quelles sont les implications pratiques de cette recherche ?

Cette étude offre des pistes pour réduire l’impact de l’AMR sur l’efficacité des dispositifs, contribuant ainsi à l’avancement des technologies basées sur le silicium.

Articles à explorer

Utiliser l'IA générative pour aider les scientifiques à synthétiser des matériaux complexes

Utiliser l’IA générative pour aider les scientifiques à synthétiser des matériaux complexes

4 février 2026
Structural configuration of a hydrogen atom within a diamond crystal

Le mécanisme de génération d’électrons libres par l’hydrogène dans le silicium élucidé pour la première fois

30 janvier 2026

Légende illustration principale : Analyse des différentes contributions au taux global d’AMR. (a) Importance relative des trois différents arrangements initiaux de la vallée pour les électrons dans le processus eeh, qui sont illustrés en (b) avec l’arrangement de type f contribuant le plus fortement. Force de l’AMR assistée par phonon pour les processus eeh (noir plein) et hhe (tiret rouge) en fonction de l’énergie des phonons (c) et de l’amplitude du vecteur d’onde (d), où les pics les plus forts sont associés aux phonons TA, mis en évidence dans la dispersion des phonons de l’encart. (e) La distribution des états porteurs excités dans la première zone de Brillioun pour les processus eeh et hhe directs et assistés par phonon, avec des tranches enlevées pour montrer la structure interne. Crédit : Kyle Bushick, Université du Michigan

Kyle Bushick and Emmanouil Kioupakis, “Phonon-Assisted Auger-Meitner Recombination in Silicon from First Principles”. Phys. Rev. Lett. 131, 076902 (2023). DOI : 10.1103/PhysRevLett.131.076902 

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: cellule solaireelectronmateriauxphononsilicium
Article précédent

1 million £ pour emprisonner le CO2 avec la technique de minéralisation

Article suivant

Résister aux goulets d’étranglement dans les réseaux neuronaux

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Various optics, including lenses and mirrors, as well as other test equipment which are used for directing and measuring
Quantique

Une nouvelle plateforme optique pour les superordinateurs quantiques

il y a 2 heures
L'impression 3D sous-marine pourrait révolutionner la construction maritime
Impression

L’impression 3D sous-marine pourrait révolutionner la construction maritime

il y a 19 heures
SEM images of a dangling croissant-shaped microstructure with a 3D curved surface assembled from SiO 2 particles. 
Nanotechnologie

Une technique de micro-nano fabrication 3D de pointe surmonte les limitations matérielles

il y a 20 heures
Close up of an optical amplifier chip, similar to the one detailed in this study, that is being developed in the lab of
Optique

Un amplificateur optique économe en énergie, de la taille d’une puce, peut intensifier la lumière 100 fois.

il y a 1 jour
Lingfeng Tao
Robotique

Un chercheur américain veut donner aux robots une touche humaine

il y a 2 jours
Comment un réfrigérateur pourrait révolutionner l'élevage laitier moderne dans les pays en développement
Recherche

Un réfrigérateur pour révolutionner l’élevage laitier moderne dans les pays en développement

il y a 2 jours
Assoc. Prof. Dr. Savaş Taşoğlu of Koç University, lead author of the Science Advances study on machine learning–assisted
Intelligence artificielle

Le « machine learning » automatise la conception de puces microfluidiques

il y a 3 jours
Researchers captured real-time images of monolayer two-dimensional semiconductors growing inside a microreactor, reveali
Matériaux

Un microréacteur révèle les secrets de croissance des semiconducteurs 2D en temps réel

il y a 3 jours
Plus d'articles
Article suivant
Résister aux goulets d'étranglement dans les réseaux neuronaux

Résister aux goulets d'étranglement dans les réseaux neuronaux

Comment produire de l'hydrogène à moindre coût et de manière durable ?

Comment produire de l'hydrogène à moindre coût et de manière durable ?

La recharge rapide sans risques : la clé est dans le graphite ?

La recharge rapide sans risques : la clé est dans le graphite ?

MME2026 300x600

Inscription newsletter

Tendance

Various optics, including lenses and mirrors, as well as other test equipment which are used for directing and measuring
Quantique

Une nouvelle plateforme optique pour les superordinateurs quantiques

par La rédaction
9 février 2026
0

Une lueur d'espoir apparaît au bout du tunnel dans la longue quête de développement d'ordinateurs quantiques, qui...

L'impression 3D sous-marine pourrait révolutionner la construction maritime

L’impression 3D sous-marine pourrait révolutionner la construction maritime

8 février 2026
SEM images of a dangling croissant-shaped microstructure with a 3D curved surface assembled from SiO 2 particles. 

Une technique de micro-nano fabrication 3D de pointe surmonte les limitations matérielles

8 février 2026
Close up of an optical amplifier chip, similar to the one detailed in this study, that is being developed in the lab of

Un amplificateur optique économe en énergie, de la taille d’une puce, peut intensifier la lumière 100 fois.

8 février 2026
Lingfeng Tao

Un chercheur américain veut donner aux robots une touche humaine

7 février 2026

Points forts

Un amplificateur optique économe en énergie, de la taille d’une puce, peut intensifier la lumière 100 fois.

Un chercheur américain veut donner aux robots une touche humaine

Et si on alimentait l’IA depuis l’espace, à grande échelle

Un réfrigérateur pour révolutionner l’élevage laitier moderne dans les pays en développement

Le « machine learning » automatise la conception de puces microfluidiques

Un microréacteur révèle les secrets de croissance des semiconducteurs 2D en temps réel

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

Various optics, including lenses and mirrors, as well as other test equipment which are used for directing and measuring

Une nouvelle plateforme optique pour les superordinateurs quantiques

9 février 2026
L'impression 3D sous-marine pourrait révolutionner la construction maritime

L’impression 3D sous-marine pourrait révolutionner la construction maritime

8 février 2026
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com