Dans le domaine de la recherche scientifique, la génération et la manipulation de impulsions lasers à haute répétition constituent des outils précieux pour diverses applications. Une équipe de chercheurs japonais a développé une technique innovante appelée « spectrum shuttle », capable de bousculer ce domaine. Ainsi, cette nouvelle méthode pourrait améliorer l’efficacité de la photographie à haute vitesse, du traitement au laser et de la génération d’ondes acoustiques.
La génération et la manipulation de pulsations à haute répétition, en particulier les impulsions en rafale de gigahertz (GHz), sont essentielles pour visualiser des phénomènes ultra-rapides et améliorer l’efficacité du traitement au laser.
La production de ces impulsions présente en revanche des défis, notamment un faible rendement de l’énergie des impulsions, un mauvais ajustement des intervalles d’impulsions et la complexité des systèmes existants.
De plus, la formation du profil spatial de chaque impulsion en rafale de GHz est limitée par la réponse inadéquate des modulateurs de lumière spatiale.
La solution : la technique « spectrum shuttle »
En réponse à ces défis, une équipe de chercheurs de l’Université de Tokyo et de l’Université de Saitama a développé une technique optique innovante appelée « spectrum shuttle ». Cette méthode permet à la fois la production d’impulsions en rafale de GHz et la formation individuelle de leurs profils spatiaux.
La technique implique la dispersion d’une impulsion ultra-courte horizontalement à travers des réseaux de diffraction, séparant spatialement l’impulsion en différentes longueurs d’onde à l’aide de miroirs parallèles.
Ces impulsions alignés verticalement subissent une modulation spatiale individuelle à l’aide d’un modulateur de lumière spatiale. Les impulsions modulés qui en résultent, avec des retards temporels variés dans la gamme des GHz, produisent des impulsions en rafale de GHz séparés spectralement, chacun ayant une forme unique dans son profil spatial.
Applications et implications
La méthode «spectrum shuttle» facilite l’imagerie ultra-rapide dans des échelles de temps subnanosecondes à nanosecondes, permettant l’analyse de phénomènes rapides et non répétitifs. Ses applications potentielles comprennent la découverte de phénomènes ultra-rapides inconnus et la surveillance de processus physiques rapides dans des contextes industriels.
La capacité de former individuellement des pulses en rafale de GHz promet également d’améliorer la précision du traitement au laser et de la thérapie au laser.
Notamment, la conception compacte de la méthode proposée améliore sa portabilité, la rendant applicable dans diverses installations de recherche scientifique et secteurs technologiques industriels.
« Notre configuration optique unique permet de manipuler des impulsions ultracourtes avec un chemin optique tridimensionnel, ce qui permet une manipulation spatiale sans précédent des impulsions de rafales de GHz« , explique Keitaro Shimada, candidat au doctorat au département de bio-ingénierie de l’université de Tokyo.
Il ajoute : « Spectrum shuttle offre une large gamme d’impulsions de rafales de GHz avec des intervalles allant de 10 picosecondes à 10 nanosecondes. Je pense que les applications basées sur notre technique, visant diverses cibles telles que les plasmas, les métaux et les cellules, accéléreront les découvertes scientifiques et les innovations technologiques dans l’industrie et la médecine.«
En synthèse
La technique « spectrum shuttle » ouvre de nouvelles voies pour l’avancement de l’imagerie ultra-rapide, avec des implications pour la recherche scientifique et les applications industrielles. Sa capacité à produire et à former simultanément des impulsions en rafale de GHz introduit un outil polyvalent pour l’étude de phénomènes rapides et l’amélioration des processus basés sur le laser.
Pour une meilleure compréhension
Qu’est-ce que la technique « spectrum shuttle » ?
C’est une méthode optique innovante qui permet la production d’impulsions en rafale de GHz et la formation individuelle de leurs profils spatiaux.
Quels sont les avantages de cette technique ?
Elle facilite l’imagerie ultra-rapide, permet l’analyse de phénomènes rapides et non répétitifs, et améliore la précision du traitement au laser et de la thérapie au laser.
Quels sont les défis de la production d’impulsions à haute répétition ?
Les défis comprennent un faible rendement de l’énergie des impulsions, un mauvais ajustement des intervalles de impulsions (ou pulses en anglais) et la complexité des systèmes existants.
Quelles sont les applications potentielles de cette technique ?
Elle peut être utilisée pour découvrir des phénomènes ultra-rapides inconnus, surveiller des processus physiques rapides dans des contextes industriels, et améliorer la précision du traitement au laser et de la thérapie au laser.
Qu’est-ce qui rend cette technique unique ?
Sa capacité à produire et à former simultanément des impulsions en rafale de GHz, ainsi que sa conception compacte qui améliore sa portabilité.
Références
Pour plus de détails, lire l’article original de Shimada et al, « Spectrum shuttle for producing spatially shapable GHz burst pulses », Adv. Photon. Nexus 3(1), 016002 (2024), doi 10.1117/1.APN.3.1.016002