Un matériau promet une efficacité quantique de plus de 190 % dans les cellules solaires

Un matériau promet une efficacité quantique de plus de 190 % dans les cellules solaires

Des chercheurs américains ont développé un matériau qui démontre le potentiel d’augmenter considérablement l’efficacité des panneaux solaires. Ce nouveau matériau quantique vise à améliorer d’une manière significative la conversion de l’énergie solaire, jouant ainsi un rôle crucial dans la réponse aux besoins énergétiques mondiaux.

Un prototype utilisant ce matériau comme couche active dans une cellule solaire présente une absorption photovoltaïque moyenne de 80%, un taux élevé de génération de porteurs photoexcités et une efficacité quantique externe (EQE) allant jusqu’à 190%, un niveau sans précédent. Cette mesure dépasse largement la limite théorique d’efficacité de Shockley-Queisser pour les matériaux à base de silicium et propulse le domaine des matériaux quantiques pour le photovoltaïque vers de nouveaux sommets.

Chinedu Ekuma, professeur de physique, qui a publié un article sur le développement du matériau avec Srihari Kastuar, doctorant à Lehigh, dans la revue Science Advances, souligne : « Ce travail représente un bond en avant significatif dans notre compréhension et notre développement de solutions énergétiques durables, mettant en évidence des approches innovantes qui pourraient redéfinir l’efficacité et l’accessibilité de l’énergie solaire dans un avenir proche. »

Des états de bande intermédiaires distinctifs

Le bond d’efficacité du matériau est en grande partie attribuable à ses «états de bande intermédiaires» distinctifs, des niveaux d’énergie spécifiques positionnés dans la structure électronique du matériau d’une manière qui les rend idéaux pour la conversion de l’énergie solaire.

Ces états ont des niveaux d’énergie situés dans les sous-bandes interdites optimales – des plages d’énergie où le matériau peut efficacement absorber la lumière du soleil et produire des porteurs de charge – d’environ 0,78 et 1,26 électron-volts. De plus, le matériau offre des performances particulièrement élevées en termes d’absorption dans les régions infrarouge et visible du spectre électromagnétique.

Dépasser les limites traditionnelles de l’EQE

Dans les cellules solaires traditionnelles, l’EQE maximale est de 100%, représentant la génération et la collecte d’un électron pour chaque photon absorbé de la lumière du soleil. Certains matériaux et configurations avancés développés ces dernières années ont toutefois démontré la capacité de générer et de collecter plus d’un électron à partir de photons à haute énergie, représentant une EQE de plus de 100%.

Bien que ces matériaux à génération d’excitons multiples (MEG) ne soient pas encore largement commercialisés, ils ont le potentiel d’augmenter considérablement l’efficacité des systèmes d’énergie solaire. Dans le matériau développé par Lehigh, les états de bande intermédiaires permettent de capturer l’énergie des photons qui est perdue par les cellules solaires traditionnelles, notamment par réflexion et production de chaleur.

Tirer parti des lacunes de van der Waals

Les chercheurs ont développé ce nouveau matériau en tirant parti des «lacunes de van der Waals», des espaces atomiquement petits entre les matériaux bidimensionnels en couches. Ces lacunes peuvent confiner des molécules ou des ions, et les spécialistes des matériaux les utilisent couramment pour insérer, ou “intercaler”, d’autres éléments afin d’ajuster les propriétés des matériaux.

Pour développer leur nouveau matériau, les chercheurs de Lehigh ont inséré des atomes de cuivre zerovalent entre des couches d’un matériau bidimensionnel composé de séléniure de germanium (GeSe) et de sulfure d’étain (SnS).

De la modélisation informatique à la preuve de concept

Ekuma, expert en physique computationnelle de la matière condensée, a développé le prototype comme preuve de concept après une modélisation informatique approfondie du système qui a démontré un potentiel théorique prometteur.

«Sa réponse rapide et son efficacité accrue indiquent fortement le potentiel du GeSe/SnS intercalé au Cu en tant que matériau quantique pour une utilisation dans des applications photovoltaïques avancées, offrant une voie pour l’amélioration de l’efficacité dans la conversion de l’énergie solaire», a-t-il précisé. «C’est un candidat prometteur pour le développement de cellules solaires de nouvelle génération à haute efficacité, qui joueront un rôle crucial dans la réponse aux besoins énergétiques mondiaux.»

Vers une intégration future dans les systèmes d’énergie solaire

Bien que l’intégration du matériau quantique nouvellement conçu dans les systèmes d’énergie solaire actuels nécessitera des recherches et des développements supplémentaires, Chinedu Ekuma souligne que la technique expérimentale utilisée pour créer ces matériaux est déjà très avancée. Les scientifiques ont, au fil du temps, maîtrisé une méthode qui insère avec précision des atomes, des ions et des molécules dans les matériaux.

Cette avancée scientifique ouvre de nouvelles perspectives pour l’optimisation de l’efficacité des cellules solaires, contribuant ainsi à relever les défis énergétiques de notre époque. Les travaux de l’équipe de l’Université de Lehigh témoignent du potentiel des matériaux quantiques pour révolutionner le domaine du photovoltaïque et offrir des solutions durables pour un avenir énergétique plus propre.

Légende illustration : Schéma de la cellule solaire à couche mince avec CuxGeSe/SnS comme couche active. Crédit : Ekuma Lab / Lehigh University

Article : “Chemically Tuned Intermediate Band States in Atomically Thin CuxGeSe/SnS Quantum Material for Photovoltaic Applications” – DOI: 10.1126/sciadv.adl6752

[ Rédaction ]

Articles connexes