Une batterie à faible coût absorbe les émissions de CO2 pendant qu’il se recharge

Des chercheurs ont mis au point un dispositif peu coûteux qui peut capter sélectivement le dioxyde de carbone gazeux pendant qu’il se charge. Ensuite, lorsqu’il se décharge, le CO2 peut être libéré de manière contrôlée et collecté pour être réutilisé ou éliminé de manière responsable.

Le supercondensateur, qui est similaire à une batterie rechargeable, a la taille d’une pièce de deux pence et est fabriqué en partie à partir de matériaux durables, notamment des coquilles de noix de coco et de l’eau de mer.

Conçu par des chercheurs de l’université de Cambridge, le supercondensateur pourrait contribuer à alimenter les technologies de capture et de stockage du carbone à un coût bien moindre. Environ 35 milliards de tonnes de CO2 sont libérées dans l’atmosphère chaque année et il est urgent de trouver des solutions pour éliminer ces émissions et lutter contre la crise climatique. Les technologies de capture du carbone les plus avancées nécessitent actuellement de grandes quantités d’énergie et sont coûteuses.

Le supercondensateur est constitué de deux électrodes de charge positive et négative. Dans le cadre de travaux dirigés par Trevor Binford alors qu’il terminait sa maîtrise à Cambridge, l’équipe a essayé d’alterner une tension négative et une tension positive pour prolonger le temps de charge des expériences précédentes. Cela a amélioré la capacité du supercondensateur à capturer le carbone.

Nous avons découvert qu’en alternant lentement le courant entre les plaques, nous pouvions capturer deux fois plus de CO2 qu’auparavant“, a déclaré le Dr Alexander Forse du département de chimie Yusuf Hamied de Cambridge, qui a dirigé les recherches.

Le processus de charge-décharge de notre supercondensateur utilise potentiellement moins d’énergie que le processus de chauffage aux amines utilisé actuellement dans l’industrie“, a ajouté M. Forse. “Nos prochaines questions consisteront à étudier les mécanismes précis de la capture du CO2 et à les améliorer. Il s’agira ensuite de passer à l’échelle supérieure.

Les résultats sont présentés dans la revue Nanoscale.

Un supercondensateur est similaire à une batterie rechargeable, mais la principale différence réside dans la manière dont les deux dispositifs stockent la charge. Une batterie utilise des réactions chimiques pour stocker et libérer la charge, alors qu’un supercondensateur ne repose pas sur des réactions chimiques. Au lieu de cela, il s’appuie sur le mouvement des électrons entre les électrodes, de sorte qu’il met plus de temps à se dégrader et a une durée de vie plus longue.

La contrepartie est que les supercondensateurs ne peuvent pas stocker autant de charge que les batteries, mais pour quelque chose comme la capture du carbone, nous donnerions la priorité à la durabilité“, a déclaré la co-auteure Grace Mapstone. “Le plus intéressant est que les matériaux utilisés pour fabriquer les supercondensateurs sont bon marché et abondants. Les électrodes sont faites de carbone, qui provient de déchets de coquilles de noix de coco.

Nous voulons utiliser des matériaux inertes, qui ne nuisent pas à l’environnement et dont nous devons nous débarrasser moins souvent. Par exemple, le CO2 se dissout dans un électrolyte à base d’eau, qui est essentiellement de l’eau de mer.”

Des chercheurs ont mis au point un dispositif peu coûteux qui peut capter sélectivement le dioxyde de carbone gazeux pendant qu’il se charge. Ensuite, lorsqu’il se décharge, le CO2 peut être libéré de manière contrôlée et collecté pour être réutilisé ou éliminé de manière responsable.

Cependant, ce supercondensateur n’absorbe pas le CO2 spontanément : il doit être en charge pour aspirer le CO2. Lorsque les électrodes se chargent, la plaque négative aspire le gaz CO2, tout en ignorant les autres émissions, comme l’oxygène, l’azote et l’eau, qui ne contribuent pas au changement climatique. Grâce à cette méthode, le supercondensateur permet à la fois de capturer le carbone et de stocker de l’énergie.

Le Dr Israel Temprano, co-auteur, a contribué au projet en développant une technique d’analyse des gaz pour le dispositif. Cette technique utilise un capteur de pression qui réagit aux changements d’adsorption des gaz dans le dispositif électrochimique. Les résultats de la contribution de M. Temprano permettent d’affiner le mécanisme précis en jeu à l’intérieur du supercondensateur lorsque le CO2 est absorbé et libéré. La compréhension de ces mécanismes, des pertes possibles et des voies de dégradation est essentielle avant que le supercondensateur puisse être mis à l’échelle.

Ce domaine de recherche est très récent et le mécanisme précis qui fonctionne à l’intérieur du supercondensateur n’est pas encore connu“, a déclaré M. Temprano.

La recherche a été financée par une bourse Future Leaders Fellowship accordée au Dr Forse, un programme britannique de recherche et d’innovation visant à développer la prochaine vague de recherche et d’innovation de classe mondiale.

Crédit image / Gabriella Bocchetti

Partagez l'article

 

[ Communiqué ]
Lien principal : dx.doi.org/10.1039/D2NR00748G
Autre lien : www.cam.ac.uk

Articles connexes

Souscrire
Me notifier des
guest
0 Commentaires
Inline Feedbacks
Voir tous les commentaires