MME2026 728x90
mardi, février 3, 2026
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Avec 5% de données, cette technologie prédit la charge de votre batterie

battery

Avec 5% de données, cette technologie prédit la charge de votre batterie

par La rédaction
22 août 2023
en Intelligence artificielle, Technologie

Dans un monde en constante évolution technologique, la durabilité et l’efficacité des batteries lithium-ion revêtent une importance capitale. Alors que les véhicules électriques s’apprêtent à redéfinir nos routes, comment une technologie basée sur l’apprentissage automatique pourrait-elle renforcer la fiabilité de ces sources d’énergie essentielles ?

Les batteries lithium-ion alimentent bon nombre de nos appareils préférés, comme les téléphones portables et les ordinateurs portables. Et avec l’avènement des véhicules électriques, leur rôle dans notre quotidien ne cesse de s’accentuer.

Ce besoin grandissant souligne l’importance d’une source d’énergie portable fiable et sûre. C’est ici qu’intervient la gestion optimisée de ces batteries.

Un système de gestion novateur

Des chercheurs de Carnegie Mellon et de l’Université du Texas à Austin ont élaboré un système de gestion de batteries permettant d’effectuer des diagnostics essentiels sur leur santé. Ainsi, les utilisateurs peuvent prendre des décisions éclairées concernant l’état de charge et l’état de santé de leur batterie.

Reeja Jayan, professeure associée en génie mécanique, déclare : « Nous avions une base de données d’environ 11 000 courbes de charge collectées expérimentalement pour une chimie d’électrode de batterie particulière. Nous les avons utilisées pour former un modèle d’apprentissage automatique afin de prédire les courbes de charge complètes à partir de données d’entrée éparses. »

Extraction et reconstruction des caractéristiques des courbes de charge de la batterie. a) Visualisation de toutes les 10066 courbes de charge. b) Courbes de charge normalisées et courbe de charge normalisée moyenne calculée en prenant la moyenne des capacités normalisées à différentes tensions. c) Comparaison entre trois courbes de charge mesurées et les courbes de charge reconstruites correspondantes. d) Distribution de l’erreur de reconstruction de toutes les courbes de charge. dx.doi.org/10.1002/advs.202301737

La différence : L’apprentissage automatique

La particularité de ce nouveau modèle repose sur sa capacité à utiliser un volume de données minimal pour produire des prédictions de charge d’une précision remarquable. Seulement 15 minutes sont nécessaires pour déterminer la santé de la batterie.

Plus encore, le modèle peut effectuer des analyses même si la charge est interrompue. Son taux de précision élevé a permis de réaliser des prédictions sur différentes chimies d’électrodes.

Les défis à relever et l’avenir de la recherche

Malgré les succès initiaux, le modèle présente encore des défis.

« Les courbes de charge que nous avons utilisées dans l’étude ont été recueillies à un taux c constant et à température ambiante« , a indiqué Reeja Jayan, « mais le courant de charge et la température varient beaucoup dans les applications de batterie du monde réel. La collecte et l’utilisation de données réelles comme données d’entrée pour les modèles d’apprentissage automatique constitueront une prochaine étape importante pour améliorer le modèle. »

En utilisant des facteurs environnementaux et des réseaux neuronaux complexes, le système de gestion pourra effectuer des prédictions de charge et de décharge avec une précision croissante.

L’une des ressources les plus utiles pour l’avenir de ce domaine de recherche est constituée par les données provenant des batteries des véhicules électriques en circulation. L’utilisation de données réelles et de réseaux neuronaux complexes permettra aux systèmes de gestion des batteries de faire des prévisions de charge et de décharge de plus en plus précises, ce qui aura un effet d’entraînement sur la façon dont les véhicules électriques sont entretenus au fur et à mesure qu’ils deviennent plus courants.

En synthèse

Le monde des véhicules électriques exige des systèmes de gestion de batteries performants et fiables. Grâce à l’apprentissage automatique, une nouvelle approche prometteuse se dessine, offrant des diagnostics précis et des prédictions éclairées. Cette recherche, tout en étant encore en développement, s’annonce comme une étape clé pour le futur des transports électriques.

Pour une meilleure compréhension

Qu’est-ce que le système de gestion de batteries ?

Il s’agit d’un système qui permet d’effectuer des diagnostics essentiels sur la santé d’une batterie, notamment son état de charge et son état de santé.

En quoi ce nouveau modèle est-il différent ?

Il utilise l’apprentissage automatique pour effectuer des prédictions précises avec des données minimales, en seulement 15 minutes de charge.

Quels sont les défis à relever pour ce modèle ?

Le modèle doit être amélioré en utilisant des données réelles et en tenant compte de facteurs environnementaux variés.

Articles à explorer

A broad overview of the inorganic interface engineering strategies, along with deep analysis of the mechanisms on regula

Ingénierie d’interface inorganique pour stabiliser l’anode en zinc métallique

3 février 2026
Dor Tillinger and Wonbae Lee, two researchers in the Penn State College of Engineering, prepare a glass substrate with m

La biologie de l’anguille électrique inspire une puissante batterie en gel

2 février 2026

Comment cette recherche bénéficie-t-elle aux véhicules électriques ?

Elle permet de garantir une meilleure gestion des batteries, essentielle à la sécurité et à la performance des véhicules électriques.

Quelle est la prochaine étape pour cette recherche ?

Intégrer des données réelles et affiner le modèle grâce à des réseaux neuronaux complexes.

Référence : Laisuo Su et al, Battery Charge Curve Prediction via Feature Extraction and Supervised Machine Learning, Advanced Science (2023). DOI: 10.1002/advs.202301737

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: apprentissagebatteriechargeia
Article précédent

PV-leaf : La technologie solaire qui génère 10% d’électricité en plus

Article suivant

Les avantages de l’hydroélectricité pour le stockage de l’énergie à l’échelle du réseau

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

From left to right, Alessio Celi, Leticia Tarruell, and Sarah Hirthe in the Ultracold Quantum Gases lab at ICFO. ©ICFO.
Recherche

L’imagerie directe capture les vibrations cristallines d’un supra-solide composé d’atomes et de lumière

il y a 15 heures
Researchers used a nonlinear metasurface to experimentally demonstrate skyrmions that can be switched between electric a
Optique

Un dispositif commute des impulsions térahertz entre des skyrmions électriques et magnétiques

il y a 16 heures
A broad overview of the inorganic interface engineering strategies, along with deep analysis of the mechanisms on regula
Batterie

Ingénierie d’interface inorganique pour stabiliser l’anode en zinc métallique

il y a 17 heures
Physicists at the University of British Columbia sent a laser beam of an optical centrifuge into helium nano-droplets do
Nanotechnologie

Un nouveau centrifugeur optique aide les physiciens à percer les mystères des superfluides

il y a 23 heures
Dor Tillinger and Wonbae Lee, two researchers in the Penn State College of Engineering, prepare a glass substrate with m
Batterie

La biologie de l’anguille électrique inspire une puissante batterie en gel

il y a 2 jours
Using an affordable 3D printer and the CRAFT method, researchers created a model human hand from a single feedstock
Impression

Impression 3D : des répliques abordables et réalistes, aussi complexes qu’une main humaine

il y a 2 jours
Two microwave channels act as hot and cold heat reservoirs, highlighted by a reddish and a bluish glow, respectively. Th
Quantique

Un nouveau réfrigérateur quantique tire parti du bruit problématique

il y a 2 jours
With three atomic clouds whose spins (blue) are entangled with each other at a distance, the researchers can measure the
Quantique

Des mesures quantiques avec des nuages atomiques intriqués

il y a 2 jours
Plus d'articles
Article suivant
Une analyse révèle les avantages de l'hydroélectricité pour le stockage de l'énergie à l'échelle du réseau

Les avantages de l'hydroélectricité pour le stockage de l'énergie à l'échelle du réseau

La danse quantique des photons en direct ressemble étrangement au Ying et Yang

La danse quantique des photons ressemble étrangement au Yin et Yang

Sandia teste avec succès un système alimenté par la chaleur

Sandia teste avec succès un système alimenté par la chaleur

MME2026 300x600

Inscription newsletter

Tendance

Rappel massif de poulet : des "Grignottes" retirées des rayons pour risque de listériose
Brèves

Rappel massif de poulet : des « Grignottes » retirées des rayons pour risque de listériose

par La rédaction
3 février 2026
0

Un rappel consommateur d’ampleur nationale concerne plusieurs références de grignottes de poulet vendues fin janvier, en raison...

E.Leclerc déploie son réseau national de recharge pour véhicules électriques

E.Leclerc déploie son réseau national de recharge pour véhicules électriques

3 février 2026
La chaleur des profondeurs terrestres pourrait alimenter la transition mondiale vers l'énergie propre

La chaleur des profondeurs terrestres pourrait alimenter la transition mondiale vers l’énergie propre

3 février 2026
From left to right, Alessio Celi, Leticia Tarruell, and Sarah Hirthe in the Ultracold Quantum Gases lab at ICFO. ©ICFO.

L’imagerie directe capture les vibrations cristallines d’un supra-solide composé d’atomes et de lumière

3 février 2026
Researchers used a nonlinear metasurface to experimentally demonstrate skyrmions that can be switched between electric a

Un dispositif commute des impulsions térahertz entre des skyrmions électriques et magnétiques

3 février 2026

Points forts

L’imagerie directe capture les vibrations cristallines d’un supra-solide composé d’atomes et de lumière

Un dispositif commute des impulsions térahertz entre des skyrmions électriques et magnétiques

Ingénierie d’interface inorganique pour stabiliser l’anode en zinc métallique

Les véhicules terrestres à hydrogène offrent une voie vers des aéroports plus propres

Un nouveau centrifugeur optique aide les physiciens à percer les mystères des superfluides

Cancer du pancréas : une trithérapie élimine la tumeur chez la souris, un espoir majeur

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

Rappel massif de poulet : des "Grignottes" retirées des rayons pour risque de listériose

Rappel massif de poulet : des « Grignottes » retirées des rayons pour risque de listériose

3 février 2026
E.Leclerc déploie son réseau national de recharge pour véhicules électriques

E.Leclerc déploie son réseau national de recharge pour véhicules électriques

3 février 2026
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com