La recherche en physique des matériaux a récemment été captivée par un phénomène étrange où les électrons se fractionnent en parties de leurs charges dans le graphène. Cette découverte remet en question nos connaissances fondamentales sur les comportements électroniques et pourrait influencer le développement de futurs dispositifs quantiques. Comment ces fractions électroniques émergent-elles sans le besoin d’un champ magnétique, et quelles sont les implications pour la science des matériaux ?
Les physiciens du MIT ont franchi une étape décisive pour résoudre l’énigme de la fractionnalisation des électrons. Leur solution éclaire les conditions permettant l’émergence d’états électroniques exotiques dans le graphène et d’autres systèmes bidimensionnels.
L’étude récente s’efforce d’expliquer une découverte rapportée plus tôt cette année par un autre groupe de physiciens du MIT, sous la direction du professeur assistant Long Ju. Ju et son équipe ont observé que les électrons semblent montrer une «charge fractionnaire» dans le graphène pentacouche, une configuration constituée de cinq couches de graphène superposées sur une feuille de nitrure de bore similairement structurée.
Ju a constaté que lorsqu’un courant électrique traversait la structure pentacouche, les électrons semblaient passer sous forme de fractions de leur charge totale, même en l’absence de champ magnétique. Les scientifiques avaient déjà démontré que les électrons pouvaient se diviser en fractions sous l’influence d’un champ magnétique très fort, connu sous le nom d’effet Hall quantique fractionnaire. Le travail de Ju a été le premier à prouver que cet effet était possible dans le graphene sans champ magnétique, un phénomène inattendu jusqu’à récemment.
L’Effet Hall Quantique Anomal Anomale Fractionnaire
On a nommé ce phénomène l’« effet Hall quantique anomal fractionnaire », et les théoriciens ont cherché à expliquer comment la charge fractionnaire peut émerger du graphène pentacouche.
La nouvelle étude, dirigée par le professeur de physique du MIT Senthil Todadri, fournit une partie de la réponse. Par le biais de calculs d’interactions quantiques mécaniques, lui et ses collègues montrent que les électrons forment une sorte de structure cristalline dont les propriétés sont idéales pour permettre l’émergence de fractions électroniques.
« C’est un mécanisme entièrement nouveau, signifiant que dans l’histoire longue de plusieurs décennies, les gens n’ont jamais eu un système qui se dirige vers ces phénomènes électroniques fractionnaires », a déclaré Senthil Todadri. Il a ajouté : « C’est vraiment excitant car cela rend possible toutes sortes de nouvelles expériences que l’on ne pouvait que rêver auparavant. »
Un Nouveau Cadre Théorique
La publication de l’étude du MIT a eu lieu la semaine dernière dans le journal Physical Review Letters. Deux autres équipes de recherche, l’une de l’Université Johns Hopkins et l’autre d’Harvard, de l’Université de Californie à Berkeley et du Laboratoire National Lawrence Berkeley, ont publié des résultats similaires dans le même numéro. L’équipe du MIT comprend Zhihuan Dong, PhD ’24, et l’ancien postdoc Adarsh Patri.
En 2018, le professeur de physique du MIT Pablo Jarillo-Herrero et ses collègues ont été les premiers à observer que de nouveaux comportements électroniques pouvaient émerger en empilant et en tordant deux feuilles de graphène. Ce «graphène à angle magique», comme on l’a rapidement surnommé, a déclenché un nouveau domaine de recherche appelé twistronique, l’étude du comportement électronique dans les matériaux bidimensionnels tordus.
« Peu après ses expériences, nous avons réalisé que ces systèmes moiré seraient des plateformes idéales en général pour trouver les conditions qui permettent l’émergence de ces phases électroniques fractionnaires », a expliqué le professeur Todadri, qui a collaboré avec Jarillo-Herrero sur une étude la même année pour montrer qu’en théorie, de tels systèmes tordus pourraient exhiber une charge fractionnaire sans champ magnétique.
Surprises Expérimentales
En septembre 2023, Todadri a eu une conversation via Zoom avec Ju, qui connaissait bien son travail théorique et avait maintenu le contact à travers ses propres recherches expérimentales. Ju lui a montré des données où il avait observé ces fractions électroniques dans le graphène pentacouche, ce qui a été une grande surprise car cela ne correspondait pas aux prédictions initiales.
Dans son article de 2018, Todadri avait prédit que la charge fractionnaire devrait émerger d’une phase précurseur caractérisée par une torsion particulière de la fonction d’onde électronique. Il avait théorisé que les propriétés quantiques d’un électron devraient avoir une certaine torsion, ou degré de manipulation possible sans changer sa structure inhérente. Cette torsion, avait-il prédit, devrait augmenter avec le nombre de couches de graphène ajoutées à une structure moiré donnée.
« Pour le graphène pentacouche, nous pensions que la fonction d’onde se tordrait cinq fois, et que cela serait un précurseur pour les fractions électroniques », a dit Todadri. « Mais il a mené ses expériences et découvert que cela se tordait, mais seulement une fois. Cela a alors soulevé une grande question : comment devrions-nous penser à ce que nous voyons ? »
Légende illustration : Un cristal nuageux d’électrons pourrait expliquer la charge fractionnelle déconcertante récemment découverte dans le graphène à couches multiples.
Article : « Theory of Quantum Anomalous Hall Phases in Pentalayer Rhombohedral Graphene Moiré Structures » – DOI: 1721.1/157541
Source : MIT