Les interactions non réciproques peuvent accroître l’ordre dans un système actif. C’est ce qui ressort d’une nouvelle étude menée par des scientifiques du département de physique de la matière vivante de l’Institut Max Planck pour la dynamique et l’auto-organisation (MPI-DS). Les chercheurs ont créé un modèle pour décrire les modèles émergents en fonction du degré de non-réciprocité dans un système actif.
La matière vivante présente souvent des caractéristiques absentes dans les systèmes physiques plus simples. Un exemple typique est l’interaction asymétrique entre différentes espèces de particules : un type de molécule peut être attiré par l’autre, qui à son tour est repoussé – tout comme un prédateur poursuit sa proie qui à son tour tente de s’échapper. Ce phénomène est appelé interaction non réciproque et peut donner lieu à des motifs fascinants à plus grande échelle, comme cela a été démontré précédemment. Le motif macroscopique qui en résulte ressemble souvent à des structures essentielles à la fonctionnalité globale du système, par exemple une cellule vivante.
Dans une nouvelle étude, Navdeep Rana et Ramin Golestanian ont étudié l’interaction entre la non-réciprocité et la formation de défauts, qui influence les motifs résultants. « Généralement, une non-réciprocité plus forte entraîne une plus grande activité et est donc associée à moins d’ordre dans le système », explique Navdeep Rana. « Toutefois, nous avons constaté que c’est l’inverse qui est vrai et que des modèles d’ondes bien ordonnés sont formés lorsque la non-réciprocité dépasse un certain niveau. La nouvelle étude souligne donc l’importance de la non-réciprocité pour éliminer les défauts dans les systèmes actifs et créer des structures ordonnées. »
Les scientifiques ont utilisé des simulations pour étudier les propriétés physiques des défauts naturels qui perturbent l’ordre, tout comme les dislocations dans le métal utilisé pour fabriquer les cuillères.
« Alors qu’un entraînement hors équilibre, sous la forme d’une flexion répétée d’une cuillère, crée davantage de défauts enchevêtrés et affaiblit sa résistance jusqu’à ce qu’elle se brise, des interactions non réciproques conduisent le système vers l’élimination des défauts et la création d’un ordre parfait », ajoute M. Golestanian. « Cette propriété remarquable ouvre de nombreuses perspectives pour les applications des systèmes de matière active non réciproque », conclut-il.
Dans l’ensemble, l’étude révèle des principes physiques fondamentaux qui sous-tendent l’organisation de la matière active et qui sont importants pour la formation de la vie.
Légende illustration : Un nouveau modèle met en évidence l’importance des interactions moléculaires pour créer de l’ordre
Navdeep Rana and Ramin Golestanian, Defect interactions in the non-reciprocal Cahn–Hilliard model, New J. Phys.26 123008, 2024, Source, DOI
Navdeep Rana and Ramin Golestanian, Defect Solutions of the Nonreciprocal Cahn-Hilliard Model: Spirals and Targets, Phys. Rev. Lett. 133, 078301, 2024, Source, DOI
Source : Max Planck Institute