Des chercheurs de l’université métropolitaine d’Osaka ont élucidé une énigme de longue date en sonochimie : la raison pour laquelle les réactions chimiques ralentissent lorsque la puissance ultrasonique est très élevée. Leurs découvertes facilitent une utilisation plus intelligente des ultrasons dans des contextes scientifiques et industriels, notamment pour la dépollution environnementale et la synthèse de nanoparticules bénéfiques.
La science derrière les ultrasons et les réactions chimiques
Bien qu’elle soit imperceptible à l’oreille humaine, l’échographie influence considérablement la sonochimie. Les ondes ultrasonores appliquées à un liquide produisent de petites bulles qui se dilatent et se désintègrent rapidement, un phénomène connu sous le nom de cavitation acoustique. L’effondrement génère des explosions d’énergie qui atteignent temporairement des températures similaires à celles de la surface du soleil, déclenchant des processus chimiques.
« En général, l’augmentation de la puissance ultrasonique accélère la réaction », a déclaré Takuya Yamamoto. Il est professeur associé à l’École supérieure d’ingénierie de l’Université métropolitaine d’Osaka et auteur principal de cette étude. « Mais une fois que la puissance dépasse un certain niveau, la vitesse de réaction diminue rapidement. Ce paradoxe intrigue les chercheurs depuis des années. »
Ce phénomène paradoxal représente un obstacle important à l’avancement des applications industrielles efficaces des ultrasons.
Une approche multi-méthodes pour comprendre le renversement
Afin d’élucider le mécanisme à l’origine de ce « renversement ultrasonique », l’équipe a réalisé six types d’expériences, comprenant l’imagerie des bulles, des observations par sonochimiluminescence et des mesures de pression acoustique, ainsi que trois simulations numériques modélisant la dynamique des bulles et les températures internes.
Leurs résultats ont indiqué qu’une puissance ultrasonique excessive provoque un mouvement vigoureux des bulles, ce qui déforme les ondes ultrasoniques. Cette déformation inhibe la formation de bulles et diminue considérablement la quantité de bulles actives susceptibles de faciliter les réactions chimiques, ralentissant ainsi la vitesse de réaction totale.
Les chercheurs ont observé trois zones distinctes de réactions ultrasoniques, chacune définie par des modèles d’ondes et une dynamique des bulles uniques. Ces observations expliquent comment la vitesse des réactions chimiques, la prolifération des bulles, le courant acoustique et le comportement de dégazage varient en fonction de l’intensité des ultrasons.
« Notre étude contribue à démystifier un phénomène complexe au cours duquel les ondes sonores, le mouvement des fluides et la physique des bulles interagissent », a indiqué M. Yamamoto.
Comprendre cet équilibre est essentiel pour rendre la sonochimie plus prévisible et évolutive en vue d’une utilisation dans le monde réel.
« Nous espérons que ces résultats ouvriront la voie à des applications industrielles plus larges de la technologie ultrasonique, de la synthèse de nanoparticules à la décomposition de polluants persistants tels que les PFAS, appelés « produits chimiques éternels », a conclu M. Yamamoto.
Auteurs : Ryota Aoki, Kanji D. Hattori and Takuya Yamamoto. – Journal: Ultrasonics Sonochemistry – Article : » Revisit to the mechanism of quenching: Power effects for sonochemical reactions » – DOI: 10.1016/j.ultsonch.2025.107419