mardi, juin 24, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Comment se forment les liaisons chimiques : des physiciens observent le flux d'énergie en temps réel

Markus Koch dans le laboratoire du laser femtoseconde à l'Institut de physique expérimentale de l'Université technique de Graz. Crédit : Lunghammer - TU Graz

Comment se forment les liaisons chimiques : des physiciens observent le flux d’énergie en temps réel

par La rédaction
24 juin 2025
en Recherche, Technologie

Philipp Jarke

Une nouvelle méthode associe des gouttelettes d’hélium à des impulsions laser ultracourtes pour déclencher des processus chimiques de manière contrôlée. Elle permet de mieux comprendre le transfert d’énergie et de charge lors de la formation de liaisons chimiques.

Pour la première fois, une équipe de recherche dirigée par Markus Koch de l’Institut de physique expérimentale de l’Université technique de Graz (TU Graz) a suivi en temps réel la manière dont des atomes individuels se combinent pour former un amas et quels sont les processus impliqués. Pour ce faire, les chercheurs ont d’abord isolé des atomes de magnésium à l’aide d’hélium superfluide, puis ont utilisé une impulsion laser pour déclencher le processus de formation. Les chercheurs ont pu observer cette formation de grappes et le transfert d’énergie entre les atomes individuels avec une résolution temporelle de l’ordre de la femtoseconde (1 femtoseconde = 1 quadrillionième de seconde). Ils ont récemment publié leurs résultats dans la revue Communications Chemistry.

Un « nano-réfrigérateur » ramène les atomes à leur position de départ

« Normalement, les atomes de magnésium forment instantanément des liaisons étroites, ce qui signifie qu’il n’y a pas de configuration de départ définie pour l’observation des processus de formation des liaisons », explique Markus Koch.

Les chercheurs ont résolu ce problème, qui se pose souvent lors de l’observation de processus chimiques en temps réel, en réalisant des expériences avec des gouttelettes d’hélium superfluide. Ces gouttelettes agissent comme des « nano-frigides » ultra-froides qui isolent les atomes de magnésium les uns des autres à des températures extrêmement basses de 0,4 kelvin (= -272,75 degrés Celsius ou 0,4 degrés Celsius au-dessus du zéro absolu) à une distance d’un millionième de millimètre.

« Cette configuration nous a permis d’initier la formation de grappes avec une impulsion laser et de la suivre avec précision en temps réel », explique Michael Stadlhofer, qui a réalisé ces expériences dans le cadre de sa thèse de doctorat.

Articles à explorer

Des physiciens observent pour la première fois une nouvelle forme de magnétisme

Des physiciens observent pour la première fois une nouvelle forme de magnétisme

10 juin 2025
Des chercheurs développent des produits électroniques recyclables et guérissables

Des chercheurs développent des produits électroniques recyclables et guérissables

6 juin 2025

La spectroscopie femtoseconde rend les processus chimiques visibles

Les chercheurs ont observé les processus déclenchés par l’impulsion laser à l’aide de la spectroscopie de photoélectrons et de photoions. Alors que les atomes de magnésium se combinaient pour former un amas, ils ont été ionisés par une seconde impulsion laser. Markus Koch et ses collègues ont pu reconstituer les processus en détail sur la base des ions formés et des électrons libérés.

Les atomes mettent leur énergie en commun

La mise en commun de l’énergie est une découverte essentielle. En se liant les uns aux autres, plusieurs atomes de magnésium transfèrent l’énergie d’excitation reçue de la première impulsion laser à un seul atome de l’amas, de sorte que celui-ci atteint un état d’énergie beaucoup plus élevé. C’est la première fois que la mise en commun de l’énergie est démontrée avec une résolution temporelle.

Une recherche fondamentale avec un potentiel d’application

« Nous espérons que cette séparation atomique à l’intérieur de gouttelettes d’hélium fonctionnera également pour une classe plus large d’éléments et deviendra ainsi une méthode généralement applicable à la recherche fondamentale », déclare Markus Koch. « En outre, les résultats sur la mise en commun de l’énergie pourraient être utiles pour les processus de transfert d’énergie dans divers domaines d’application, par exemple en photomédecine ou dans l’utilisation de l’énergie solaire. »

Article : « Real-time tracking of energy flow in cluster formation » – DOI : 10.1038/s42004-025-01563-6 – Auteurs : Michael Stadlhofer, Bernhard Thaler, Pascal Heim, Josef Tiggesbäumker, Markus Koch.

Source : TU Graz

Tags: chimiefluxliaisonsphysiquetemps reel
TweetPartagePartagePartageEnvoyer
Article précédent

L’IA ouvre la voie au ciment vert

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Les accélérateurs à l'échelle de la plaquette pourraient redéfinir l'IA
Intelligence artificielle

Les accélérateurs à l’échelle de la plaquette pourraient redéfinir l’IA

il y a 2 heures
Robots bio-inspirés : quand l'IA s'ancre dans le réel
Robotique

Robots bio-inspirés : quand l’IA s’ancre dans le réel

il y a 8 heures
OTUS : Le nouveau superordinateur de l'université de Paderborn bat des records
Industrie technologie

OTUS : Le nouveau superordinateur de l’université de Paderborn bat des records

il y a 22 heures
Pilotage des textures magnétiques par des champs électriques
Recherche

Pilotage des textures magnétiques par des champs électriques

il y a 1 jour
Suicide : l'IA pourra-t-elle aider à mieux en prévenir le risque ?
Intelligence artificielle

Suicide : l’IA pourra-t-elle aider à mieux en prévenir le risque ?

il y a 1 jour
De nouvelles puces 3D pourraient rendre l'électronique plus rapide et plus économe en énergie
Industrie technologie

De nouvelles puces 3D pourraient rendre l’électronique plus rapide et plus économe en énergie

il y a 2 jours
Plus d'articles

Laisser un commentaire Annuler la réponse

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme : Amazon partenaire

Articles récents

Comment se forment les liaisons chimiques : des physiciens observent le flux d'énergie en temps réel

Comment se forment les liaisons chimiques : des physiciens observent le flux d’énergie en temps réel

24 juin 2025
L'IA ouvre la voie au ciment vert

L’IA ouvre la voie au ciment vert

24 juin 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com