Et si des vêtements ou des accessoires perfectionnés pouvaient refroidir les gens rapidement, où qu’ils se trouvent ? Des chercheurs du Lawrence Berkeley National Laboratory (Berkeley Lab) du ministère de l’énergie et de l’université de Californie à Los Angeles (UCLA) ont fait la démonstration d’un nouveau matériau qui pourrait rendre cela possible avec un minimum d’électricité.Points forts Des chercheurs du Berkeley Lab et de l’UCLA ont créé un matériau qui pompe la chaleur loin de la source.
De fines couches de polymères empilées se rapprochent et s’éloignent les unes des autres, transférant la chaleur d’une couche à l’autre.
La pompe à chaleur ne nécessite pas de réfrigérant ou d’autres liquides, mais seulement une petite quantité d’électricité.
Elle pourrait être utilisée pour fabriquer des vêtements ou des dispositifs qui refroidissent efficacement les personnes en cas de chaleur extrême.
Cette technologie fait appel à de minces couches de film à la forme changeante qui évacuent la chaleur et refroidissent l’air ambiant. Une démonstration de faisabilité, décrite dans un article publié par la revue Science, a permis d’abaisser la température ambiante de 16 degrés Fahrenheit en l’espace de 30 secondes, et les relevés effectués au bord de l’appareil sont descendus jusqu’à 25 degrés.
À l’instar des vestes chauffantes, des gants et d’autres dispositifs de chauffage portables qui ont permis aux gens de supporter plus facilement les températures glaciales, les dispositifs de refroidissement localisés pourraient apporter un soulagement en cas de vagues de chaleur.
« Au lieu de refroidir une pièce entière d’un bâtiment, notre technologie pourrait apporter du confort sous la forme d’appareils portables ou de petite taille qui consomment très peu d’électricité », a déclaré Sumanjeet Kaur, scientifique au Berkeley Lab et coauteur de l’article.
Ajouter des couches pour rester au frais
La pompe à chaleur des chercheurs utilise le refroidissement électrocalorique, un phénomène par lequel certains matériaux changent temporairement de température en réponse à un champ électrique. Toutefois, les matériaux électrocaloriques ne peuvent à eux seuls produire un effet de refroidissement suffisamment important. Ils doivent être associés à un mécanisme de transfert qui déplace continuellement la chaleur.
Plutôt que de dépendre d’une pompe ou d’un actionneur séparé, qui ajouterait de l’encombrement et consommerait plus d’énergie, les chercheurs ont conçu une solution élégante basée sur des couches empilées de matériaux électrocaloriques. Les couches servent de pompe à chaleur, déplaçant la chaleur de la couche la plus proche de la source de chaleur vers la couche la plus externe.
M. Kaur a commencé à explorer les technologies de refroidissement localisé dans le cadre d’une bourse de recherche et développement dirigée par le laboratoire du Berkeley Lab (Laboratory Directed Research and Development – LDRD). L’un des objectifs du projet, qui a débuté en 2022, était d’optimiser les matériaux électrocaloriques et de permettre leur utilisation dans un dispositif de refroidissement portable tel qu’un vêtement ou une couverture.
Experte en stockage d’énergie thermique, Mme Kaur a fait équipe avec le chercheur principal Qibing Pei, professeur de science et d’ingénierie des matériaux à la Samueli School of Engineering de l’UCLA, pour explorer le potentiel de refroidissement d’un matériau électrocalorique appelé terpolymère de poly (fluorure de vinylidène-trifluoroéthylène-chlorofluoroéthylène), ou P(VDF-TrFE-CFE). En février dernier, ils ont publié avec leurs collègues un article démontrant que la fabrication de ce film de terpolymère à l’aide d’un mélange de solvants permettait d’obtenir des différences de température plus importantes (c’est-à-dire plus de refroidissement) que les méthodes de synthèse habituelles.
Ce matériau amélioré est à la base de la pompe à chaleur à l’épreuve du concept démontrée dans l’article de Science. Six disques de film polymère, chacun d’environ un pouce de diamètre et recouvert de nanotubes de carbone, ont été empilés. Les nanotubes servent de conducteurs au champ électrique qui stimule le matériau. L’application d’une tension à des films alternés dans la pile entraîne le rapprochement et l’éloignement des couches, ce qui transfère la chaleur d’une couche à l’autre et l’éloigne de la source.
Refroidissement sans liquide
Contrairement à la plupart des climatiseurs, le système électrocalorique ne fait pas appel à des réfrigérants ou à de l’eau. L’utilisation de ce type de refroidissement hyperlocal peut également permettre d’économiser de l’énergie et de réduire la pression sur le réseau en gardant les gens au frais tout en permettant un réglage plus élevé des thermostats dans les bâtiments.
La technologie en instance de brevet est le résultat d’un effort conjoint de l’UCLA et du Berkeley Lab. Les chercheurs ont noté que l’augmentation de la conductivité thermique des matériaux et l’isolation de la pile de l’air ambiant devraient permettre d’accroître considérablement la puissance de refroidissement du concept. Ils recherchent maintenant des financements pour construire un prototype dans le but d’étendre le dispositif de l’étude et d’évaluer ses performances à long terme.
Légende illustration : La pompe à chaleur auto-régénératrice de l’étude (photo) empile six couches de polymères dynamiques qui transfèrent la chaleur de l’une à l’autre. (Crédit : Dr. Hanxiang Wu, UCLA)
Article : « A self-regenerative heat pump based on a dual-functional relaxor ferroelectric polymer » – DOI : 10.1126/science.adr2268