La manipulation de matériaux magnétiques pour des applications technologiques représente un domaine de recherche intensif. Les physiciens du MIT ont développé une méthode innovante pour contrôler l’état magnétique des matériaux à l’aide de la lumière, une approche qui pourrait transformer la manière dont nous concevons le stockage des données. Cette avancée pose un nouveau paradigme dans la technologie des puces mémoire et pourrait offrir des solutions plus robustes et efficaces.
Les physiciens du MIT ont réussi à créer un état magnétique durable dans un matériau en utilisant uniquement la lumière. Dans une étude publiée dans la revue Nature, les chercheurs ont utilisé un laser terahertz — une source lumineuse oscillant plus d’un trillion de fois par seconde — pour stimuler directement les atomes d’un matériau antiferromagnétique. Les oscillations du laser sont ajustées aux vibrations naturelles entre les atomes du matériau, permettant ainsi de décaler l’équilibre des spins atomiques vers un nouvel état magnétique.
Contrôle des matériaux antiferromagnétiques
Les résultats de cette recherche offrent une nouvelle méthode pour contrôler et basculer les matériaux antiferromagnétiques, qui suscitent un intérêt particulier pour leurs applications potentielles dans le traitement de l’information et la technologie des puces mémoire. Contrairement aux aimants ordinaires, appelés ferromagnétiques, où les spins des atomes pointent dans la même direction et peuvent facilement être influencés par un champ magnétique externe, les antiferromagnétiques possèdent des spins alternés. Cette configuration en «haut, bas, haut, bas» annule les spins, conférant aux antiferromagnétiques une magnétisation nette nulle, insensible à toute attraction magnétique.
Si l’on pouvait fabriquer une puce mémoire à partir d’un matériau antiferromagnétique, les données seraient inscrites dans des régions microscopiques appelées domaines. Une configuration spécifique des orientations des spins (par exemple, haut-bas) dans un domaine donné représenterait un bit «0», tandis qu’une autre configuration (bas-haut) signifierait « 1 ». Les données enregistrées sur une telle puce seraient résistantes aux influences magnétiques extérieures.

Les défis de la manipulation des antiferromagnétiques
Pour diverses raisons, les scientifiques considèrent que les matériaux antiferromagnétiques pourraient offrir une alternative plus robuste aux technologies de stockage magnétique existantes. Cependant, un obstacle majeur réside dans le contrôle des antiferromagnétiques afin de passer d’un état magnétique à un autre de manière fiable.
« Les matériaux antiferromagnétiques sont robustes et ne sont pas influencés par les champs magnétiques indésirables », a expliqué Nuh Gedik, professeur de physique à MIT. « Toutefois, cette robustesse est à double tranchant ; leur insensibilité aux champs magnétiques faibles rend ces matériaux difficiles à contrôler. »
En utilisant une lumière térahertz précisément ajustée, l’équipe du MIT a réussi à commuter un antiferromagnétique vers un nouvel état magnétique de manière contrôlée. Ces matériaux pourraient être intégrés dans des puces mémoire futures, capables de stocker et de traiter plus de données tout en consommant moins d’énergie et en occupant moins d’espace, grâce à la stabilité des domaines magnétiques.
Expérimentation et résultats
Pour tester leur hypothèse, l’équipe a travaillé avec un échantillon de FePS3 synthétisé par leurs collègues de l’Université nationale de Séoul. Ils ont placé l’échantillon dans une chambre à vide et l’ont refroidi à des températures inférieures ou égales à 118 Kelvin. Ensuite, ils ont généré une impulsion térahertz en dirigeant un faisceau de lumière proche infrarouge à travers un cristal organique, transformant la lumière en fréquences térahertz. Cette lumière a ensuite été dirigée vers l’échantillon.
« Cette impulsion térahertz est utilisée pour provoquer un changement dans l’échantillon », a ajouté Tianchuang Luo. « C’est comme inscrire un nouvel état dans l’échantillon. »
Pour vérifier que l’impulsion avait bien modifié le magnétisme du matériau, l’équipe a également visé l’échantillon avec deux lasers infrarouges proches, chacun avec une polarisation circulaire opposée. En l’absence d’effet, les chercheurs ne devraient observer aucune différence dans l’intensité des lasers infrarouges transmis.
« Le simple fait de voir une différence nous indique que le matériau n’est plus l’antiferromagnétique initial et que nous induisons un nouvel état magnétique en secouant essentiellement les atomes avec de la lumière térahertz », a commenté Batyr Ilyas.
Au cours de nombreuses expériences, l’équipe a observé que l’impulsion térahertz a réussi à commuter le matériau, auparavant antiferromagnétique, vers un nouvel état magnétique. Cette transition a persisté de manière surprenante pendant plusieurs millisecondes, même après l’extinction du laser.
« Les gens ont observé ces transitions de phase induites par la lumière dans d’autres systèmes, mais généralement elles ne durent que très peu de temps, de l’ordre d’un picoseconde, soit un trillionième de seconde », a indiqué Nuh Gedik.
Légende illustration : « En général, ces matériaux antiferromagnétiques ne sont pas faciles à contrôler », explique Nuh Gedik, photographié entre Tianchuang Luo, à gauche, et Alexander von Hoegen. Les autres coauteurs du MIT sont Batyr Ilyas, Zhuquan Zhang et Keith Nelson. crédit : Adam Glanzman
Article : ‘“Terahertz field-induced metastable magnetization near criticality in FePS3”’ / ( 10.1038/s41586-024-08226-x ) – Massachusetts Institute of Technology – Publication dans la revue Nature