dimanche, décembre 14, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Focalisation de lasers ultra-intenses sur une seule longueur d'onde

Focalisation de lasers ultra-intenses sur une seule longueur d’onde

par La rédaction
6 avril 2024
en Laser, Technologie

Les lasers ultra-intenses et ultra-courts sont des outils puissants utilisés dans divers domaines comme la physique, la sécurité nationale, l’industrie et la santé. Ils permettent aux chercheurs d’explorer en profondeur la physique des lasers à champ fort, les sources de rayonnement induites par laser, l’accélération de particules et bien plus encore.

La «puissance crête» mesure l’intensité de ces lasers, comme le laser Nova (Lawrence Livermore National Laboratory, Californie, États-Unis) avec une puissance crête de 1,5 pétawatts, le Shanghai Super-intense Ultrafast Laser Facility (SULF, Chine) avec 10 pétawatts, ou l’Extreme Light Infrastructure – Nuclear Physics (ELI-NP, Roumanie) avec une puissance crête de 10 pétawatts.

Ce qui importe réellement dans les expériences reste par contre l’intensité focalisée sur la cible. Les lasers sont focalisés sur des cibles expérimentales à l’aide de miroirs paraboliques hors axe. L’intensité focalisée, et non la puissance crête, reflète la capacité du laser et est cruciale pour les utilisateurs.

Améliorer la focalisation avec des miroirs hyperboliques

Actuellement, l’ouverture du faisceau de ces lasers est de 150 à 500 mm, et le nombre F (lié à la capacité de focalisation) est de 2 à 10. L’ajout d’un miroir hyperbolique rotationnel après le miroir parabolique peut réduire considérablement le nombre F et donc la taille du spot focal.

Comme rapporté dans Advanced Photonics Nexus, cette méthode de focalisation secondaire peut réduire le nombre F d’un facteur 5, ce qui réduit ensuite la taille du spot focal du laser ultra-intense et ultra-court à une taille d’une seule longueur d’onde.

Atteindre le plus petit spot focal possible

L’auteur correspondant Zhaoyang Li du Key Laboratory of Ultra-intense Laser Science and Technology, Shanghai Institute of Optics and Fine Mechanics (Chine), note que cette technique permet d’obtenir le plus petit spot focal possible : « L’utilisation de miroirs hyperboliques pour une focalisation secondaire peut réduire le spot focal de nos lasers ultra-intenses et ultra-courts d’une taille de plusieurs longueurs d’onde à une taille d’une seule longueur d’onde, atteignant ainsi le plus petit spot focal possible. »

Li et son équipe rapportent que des spots focaux d’une seule longueur d’onde peuvent être obtenus en ajoutant un miroir hyperbolique rotationnel optimisé aux lasers femtosecondes de classe pétawatt actuels ou aux futurs lasers de classe pétawatt à cycle unique.

« En combinaison avec notre méthode Wide-angle Non-collinear Optical Parametric Chirped Pulse Amplification (WNOPCPA) proposée précédemment, on s’attend à atteindre la condition d’intensité la plus élevée d’une installation laser ultra-intense et ultra-courte, c’est-à-dire en focalisant toute l’énergie laser dans un cube focal spatio-temporel bordé par la longueur d’onde centrale du laser. Cela améliorera considérablement la capacité expérimentale des lasers ultra-intenses et ultra-courts dans l’application de la physique des lasers à champ fort, comme l’électrodynamique quantique du vide », déclare pour conclure Zhaoyang Li.

Articles à explorer

Lauren Riddiford, Aleš Hrabec et Jeffrey Brock (de gauche à droite) dans la salle blanche de Park Innovaare, située juste à côté du PSI. C'est là que de nouvelles structures magnétiques sont créées et modifiées avec précision à l'aide de la technologie laser. (Crédit : © Institut Paul Scherrer PSI / Mahir Dzambegovic)

Le laser dessine des paysages magnétiques sur mesure

13 décembre 2025
Des chercheurs de Sydney maîtrisent la lumière « bruyante » dans des lasers miniatures

Des chercheurs de Sydney maîtrisent la lumière « bruyante » dans des lasers miniatures

2 décembre 2025

Légende illustration : Focalisation secondaire avec hyperbole après parabole. Crédit : Zhaoyang Li, doi 10.1117/1.APN.3.3.036002

Article original par Z. Li, et al., “Single-wavelength size focusing of ultra-intense ultrashort lasers with rotational hyperbolic mirrors,” Adv. Photon. Nexus 3(3) 036002 (2024), doi 10.1117/1.APN.3.3.036002

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: femtosecondeintensitelaserlongueur onde
Article précédent

10% des plus riches émettent plus de 50% des gaz à effet de serre mondiaux

Article suivant

L’apprentissage automatique permet d’assurer la viabilité des éoliennes à axe vertical

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

L'image de gauche montre le robot cueilleur de tomates et la caméra. L'image de droite montre une « vue robotisée » des tomates. Rouge
Robotique

RoboCrop : Apprendre aux robots à cueillir des tomates

il y a 3 heures
Lauren Riddiford, Aleš Hrabec et Jeffrey Brock (de gauche à droite) dans la salle blanche de Park Innovaare, située juste à côté du PSI. C'est là que de nouvelles structures magnétiques sont créées et modifiées avec précision à l'aide de la technologie laser. (Crédit : © Institut Paul Scherrer PSI / Mahir Dzambegovic)
Laser

Le laser dessine des paysages magnétiques sur mesure

il y a 19 heures
L'auteur principal Marshall Trout, à droite, a travaillé avec quatre personnes amputées pour étudier comment l'IA pourrait être utilisée pour contrôler de manière autonome
Robotique

Une main bionique dopée à l’IA saisit les objets toute seule et réduit l’effort mental

il y a 21 heures
Image SEM des tubes magnétiques torsadés. 2025 EPFL/LMGN CC BY SA
Nanotechnologie

Les nanotubes torsadés qui racontent une histoire

il y a 2 jours
Daniele Pucci, chercheur principal à l'Institut italien de technologie (IIT), est devenu le PDG de la nouvelle start-up.
Robotique

Generative Bionics lève 70 ME pour des robots humanoïdes intelligents « Made in Italy »

il y a 2 jours
Cellules de type poche fabriquées à l'aide de la technologie développée à partir de la cellule supérieure avec anode en lithium métal, cellule avec graphite
Batterie

Tisser les électrodes de batteries secondaires avec des fibres et les nouer comme des cordes

il y a 2 jours
Plus d'articles
Article suivant
L'apprentissage automatique permet d'assurer la viabilité des éoliennes à axe vertical

L'apprentissage automatique permet d'assurer la viabilité des éoliennes à axe vertical

Un moyen simple d'exploiter davantage l'énergie bleue des vagues

Un moyen simple d'exploiter davantage l'énergie bleue des vagues

SAURON : l'œil qui traque les aérosols mortels dans l'air ambiant

SAURON : l'œil qui traque les aérosols mortels dans l'air ambiant

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

L'image de gauche montre le robot cueilleur de tomates et la caméra. L'image de droite montre une « vue robotisée » des tomates. Rouge

RoboCrop : Apprendre aux robots à cueillir des tomates

14 décembre 2025
Lauren Riddiford, Aleš Hrabec et Jeffrey Brock (de gauche à droite) dans la salle blanche de Park Innovaare, située juste à côté du PSI. C'est là que de nouvelles structures magnétiques sont créées et modifiées avec précision à l'aide de la technologie laser. (Crédit : © Institut Paul Scherrer PSI / Mahir Dzambegovic)

Le laser dessine des paysages magnétiques sur mesure

13 décembre 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com