Les semi-conducteurs sont au cœur des technologies de nouvelle génération, et une nouvelle méthode pour exciter les atomes dans les matériaux semi-conducteurs est susceptible de susciter l’intérêt d’un large éventail de chercheurs et d’industries. Des scientifiques américains ont démontré l’excitation atomique dans un matériau semi-conducteur bidimensionnel, faisant ainsi progresser le développement des dispositifs électroniques.
Une méthode d’excitation des atomes dans les semi-conducteurs
En utilisant des impulsions térahertz ultrarapides intenses et à large bande, les chercheurs ont réussi à exciter les atomes dans un matériau semi-conducteur bidimensionnel. Cette avancée ouvre la voie à de nouvelles applications dans le domaine de l’électronique.
Les matériaux bidimensionnels, ou nanomatériaux en forme de feuille, sont des plateformes prometteuses pour les futures applications des semi-conducteurs en raison de leurs propriétés électroniques uniques. Les dichalcogénures de métaux de transition (TMD), un groupe important de matériaux 2D, sont constitués de couches d’atomes de métaux de transition prises en sandwich entre des couches d’atomes de chalcogènes.
Les phonons cohérents : un rôle dans les propriétés des matériaux
Disposés en structure de réseau, ces atomes peuvent vibrer ou osciller autour de leurs positions d’équilibre – cette excitation collective est connue sous le nom de phonon cohérent et joue un rôle crucial dans la détermination et le contrôle des propriétés des matériaux.
Traditionnellement, les phonons cohérents sont induits par des lasers pulsés ultrarapides dans les régions visibles et proche infrarouge. Les méthodes utilisant d’autres sources de lumière restent limitées.

Une étude sur l’excitation des phonons cohérents
Satoshi Kusaba, professeur adjoint à la Graduate School of Engineering Science de l’Université Nationale de Yokohama et premier auteur de l’étude, explique : «Notre étude aborde la question fondamentale de savoir comment les phonons cohérents sont induits par les lasers ultrarapides à fréquence térahertz – ou photons de faible énergie – dans les matériaux TMD.»
L’équipe de recherche a préparé des impulsions térahertz ultrarapides à large bande pour induire une dynamique de phonons cohérents dans des films minces d’un TMD appelé WSe2. Un dispositif précis et sensible a été mis en place pour détecter l’anisotropie optique, c’est-à-dire la façon dont la lumière se comporte lorsqu’elle traverse le matériau.
Un processus d’excitation distinct par somme de fréquences
Haw-Wei Lin, doctorant au California Institute of Technology au moment de la recherche et co-premier auteur de cette étude, souligne : « La découverte la plus importante de notre étude est que l’excitation térahertz peut induire des phonons cohérents dans les TMD par un processus distinct d’excitation par somme de fréquences. Ce mécanisme, qui est fondamentalement différent des processus d’absorption résonnants et linéaires, implique que l’énergie combinée de deux photons térahertz correspond à celle du mode phonon. »
« Avec le processus d’excitation par somme de fréquences, nous pouvons contrôler de manière cohérente les positions atomiques bidimensionnelles en utilisant l’excitation térahertz. Cela pourrait ouvrir la voie au contrôle des états électroniques des TMD, ce qui est prometteur pour le développement de la valleytronique et des dispositifs électroniques utilisant les TMD pour une informatique à faible consommation d’énergie, à haute vitesse et des sources de lumière spécialisées. » conclut Satoshi Kusaba.
Les implications des résultats de l’étude vont au-delà de la recherche fondamentale et sont prometteuses pour une variété d’applications dans le monde réel.
Article : « Terahertz sum-frequency excitation of coherent optical phonons in the two-dimensional semiconductor WSe2 » – DOI: 10.1063/5.0191558