L’innovation dans le domaine du stockage d’énergie transforme la conception des appareils électroniques et des véhicules. Une équipe de chercheurs suédois a développé une batterie structurelle novatrice qui pourrait métamorphoser radicalement de nombreux produits du quotidien.
Une équipe de recherche de l’Université de technologie Chalmers en Suède a réalisé une avancée dans le domaine du stockage d’énergie sans masse. Les scientifiques ont mis au point une batterie structurelle capable de réduire considérablement le poids des appareils électroniques et d’augmenter l’autonomie des véhicules électriques.
Richa Chaudhary, chercheuse à Chalmers et auteure principale de l’étude a expliqué : «Une batterie en composite de fibres de carbone, aussi rigide que l’aluminium et suffisamment dense en énergie pour une utilisation commerciale, a été créée par notre équipe. À l’instar du squelette humain, la batterie remplit plusieurs fonctions simultanément.»
Des performances améliorées pour une utilisation concrète
Les chercheurs ont considérablement amélioré leur concept initial pour accroître à la fois la rigidité et la densité énergétique de la batterie. La densité énergétique atteint désormais 30 Wh/kg, soit une augmentation de 25% par rapport à la version précédente. Bien que cette valeur reste inférieure à celle des batteries lithium-ion conventionnelles, l’intégration de la batterie à la structure même des appareils offre des avantages considérables en termes de poids global.
Le professeur Leif Asp, responsable de la recherche, a souligné l’importance de cette innovation : «L’investissement dans des véhicules légers et économes en énergie s’impose comme une évidence pour économiser l’énergie et penser aux générations futures. Nos calculs sur les voitures électriques démontrent qu’elles pourraient parcourir jusqu’à 70% de distance supplémentaire avec des batteries structurelles compétitives.»
La nouvelle batterie structurelle présente une rigidité nettement accrue, passant de 25 à 70 GPa. Cette amélioration permet au matériau de supporter des charges aussi efficacement que l’aluminium, tout en étant plus léger. Les domaines d’application potentiels sont vastes et incluent :
– Des smartphones ultra-fins, de l’épaisseur d’une carte de crédit
– Des ordinateurs portables deux fois plus légers qu’actuellement
– Des composants électroniques intégrés dans les voitures et les avions
– Une autonomie accrue pour les véhicules électriques
Vers une commercialisation progressive
Bien que des progrès significatifs aient été réalisés, le chemin vers la commercialisation à grande échelle reste parsemé de défis. La production en laboratoire à petite échelle doit être adaptée pour répondre aux exigences de l’industrie. Le professeur Leif Asp a noté un vif intérêt de la part des secteurs automobile et aérospatial, soulignant le potentiel transformateur de cette technologie.
La création de la société Sinonus AB, basée à Borås en Suède, marque une étape importante dans le processus de commercialisation. Cette entreprise vise à faire le lien entre la recherche académique et les applications industrielles concrètes.
L’avenir s’annonce prometteur pour les batteries structurelles, avec la perspective de transformer profondément la conception de nombreux produits du quotidien. Les chercheurs poursuivent leurs travaux pour optimiser davantage les performances et faciliter la production à grande échelle de cette technologie innovante.
Focus sur la recherche et batteries structurelles
Les batteries structurelles sont des matériaux qui, en plus de stocker de l’énergie, peuvent supporter des charges. Ainsi, le matériau de la batterie peut faire partie du matériau de construction d’un produit, ce qui permet de réduire considérablement le poids des voitures électriques, des drones, des outils portatifs, des ordinateurs portables et des téléphones mobiles, par exemple.
Le concept de batterie développé est basé sur un matériau composite et comporte de la fibre de carbone comme électrodes positives et négatives, l’électrode positive étant recouverte de phosphate de fer lithié. Lors de la présentation du précédent concept de batterie, le cœur de l’électrode positive était constitué d’une feuille d’aluminium.
La fibre de carbone utilisée dans le matériau de l’électrode est multifonctionnelle. Dans l’anode, elle sert de renfort, de collecteur électrique et de matériau actif. Dans la cathode, elle sert de renfort, de collecteur de courant et d’échafaudage pour le lithium. Comme la fibre de carbone conduit le courant électronique, il n’est pas nécessaire d’utiliser des collecteurs de courant en cuivre ou en aluminium (par exemple), ce qui réduit encore le poids total. Les électrodes choisies ne nécessitent pas non plus de métaux dits « conflictuels » tels que le cobalt ou le manganèse.
Dans la batterie, les ions lithium sont transportés entre les bornes de la batterie à travers un électrolyte semi-solide, au lieu d’un électrolyte liquide, ce qui représente un défi lorsqu’il s’agit d’obtenir une puissance élevée, et pour cela des recherches supplémentaires sont nécessaires. En même temps, la conception contribue à accroître la sécurité dans la cellule de la batterie, en réduisant le risque d’incendie.
Légende illustration : Des chercheurs de l’université de technologie de Chalmers ont réussi à créer une batterie en composite de fibre de carbone aussi rigide que l’aluminium et suffisamment dense en énergie pour être utilisée dans le commerce. Lorsque les voitures, les avions, les bateaux ou les ordinateurs sont construits à partir d’un matériau qui sert à la fois de batterie et de structure porteuse, le poids et la consommation d’énergie sont radicalement réduits. Crédit : Chalmers University of Technology | Henrik Sandsjö
Article : ‘Unveiling the Multifunctional Carbon Fibre Structural Battery’ / ( 10.1002/adma.202409725 ) – Chalmers University of Technology – Publication dans la revue Advanced Materials