La surchauffe des puces électroniques bientôt sous contrôle ?

La surchauffe des puces électroniques bientôt sous contrôle ?

Le domaine des semi-conducteurs et des systèmes électroniques est en constante évolution, avec l’apparition de composants toujours plus petits et performants. Pour maintenir ces dispositifs à des températures de fonctionnement optimales, des solutions de refroidissement innovantes sont nécessaires.

Des chercheurs de l’université de Penn State ont mis au point un nouveau dispositif thermoélectrique à base d’alliages Heusler qui pourrait révolutionner le refroidissement des semi-conducteurs. Ce matériau innovant présente une densité de puissance frigorifique 210% supérieure au tellurure de bismuth, tout en conservant un coefficient de performance élevé.

Cette percée résout deux défis majeurs du refroidissement thermoélectrique, souligne le Pr Shashank Priya de l’université du Minnesota, co-auteur de l’étude publiée dans Nature Communications : fournir une grande densité de puissance frigorifique avec un haut rendement, et évacuer très localement une importante quantité de chaleur. Cette technologie est ainsi optimale pour les applications nécessitant un refroidissement localisé très efficace, comme les diodes laser.

Une méthode innovante pour exploiter le potentiel des Heusler

L’équipe a utilisé sur ces alliages Heusler un procédé de recuit spécifique, jamais employé auparavant sur ce type de matériaux. Il permet de modifier la microstructure et de supprimer les défauts, notamment en faisant croître considérablement la taille des grains.

Ceci améliore nettement la mobilité des porteurs de charges dans le matériau et donc son facteur de puissance, déterminant pour les performances frigorifiques. D’autre part, ces alliages affichent le meilleur facteur de mérite jamais obtenu à température ambiante pour des Heusler, synonyme d’un excellent rendement.

Outre le facteur de puissance élevé, les matériaux ont produit le chiffre de mérite moyen, ou rendement, le plus élevé de tous les matériaux demi-Heusler dans la plage de température de 300 à 873 degrés Kelvin. Les scientifiques ont déclaré que les résultats montrent une stratégie prometteuse pour l’optimisation des matériaux demi-Heusler pour les applications thermoélectriques à température ambiante.

En tant que pays, nous investissons beaucoup dans le CHIPS et le Science Act, et l’un des problèmes pourrait être de savoir comment la microélectronique peut gérer une densité de puissance élevée à mesure qu’elle devient plus petite et fonctionne à une puissance plus élevée“, a déclaré M. Poudel. “Cette technologie pourrait permettre de relever certains de ces défis.

Des perspectives prometteuses pour l’électronique de puissance

Cette avancée représente une piste prometteuse pour améliorer la gestion thermique des composants électroniques miniaturisés de nouvelle génération. Elle pourrait contribuer à relever certains défis en termes de dissipation de la chaleur générée par les microprocesseurs ultra-compacts. Les applications potentielles sont nombreuses, par exemple pour le refroidissement des puces électroniques des centres de données ou des véhicules électriques.

En synthèse

Cette percée ouvre la voie à une électronique nouvelle génération plus compacte et performante. Elle pourrait contribuer à relever certains défis posés par la miniaturisation des puces, en permettant une évacuation efficace de la chaleur générée. Les applications potentielles sont nombreuses, du refroidissement des data centers à celui des véhicules électriques.

Pour une meilleure compréhension

Quel est le défi du refroidissement des composants électroniques actuels ?

La miniaturisation et l’augmentation de la puissance des puces électroniques pose un défi majeur en termes de dissipation de la chaleur générée. Les solutions actuelles arrivent à saturation.

En quoi consiste la percée des chercheurs de Penn State ?

Ils ont développé un nouveau dispositif thermoélectrique à base d’alliages Heusler offrant des performances inégalées en termes de puissance frigorifique et de rendement.

Comment ont-ils amélioré les propriétés de ce matériau ?

Grâce à un procédé de recuit innovant qui a permis de supprimer les défauts et d’augmenter la taille des grains, améliorant nettement ses propriétés de conduction.

Quelles applications potentielles pour cette technologie ?

Le refroidissement localisé des semi-conducteurs de puissance, par exemple pour les lasers ou les microprocesseurs des ordinateurs et smartphones.

Les matériaux demi-Heusler peuvent améliorer la densité de puissance de refroidissement des dispositifs thermoélectriques et fournir une solution de refroidissement pour la prochaine génération d’appareils électroniques à haute puissance. Crédit : Photo fournie par Wenjie Li .

[ Rédaction ]

Articles connexes