Avez-vous déjà observé les bulles qui se forment dans un verre de champagne ? Un phénomène similaire se produit dans certains processus industriels, avec des conséquences importantes pour notre consommation d’énergie. Une équipe de chercheurs du MIT vient de faire une découverte surprenante à ce sujet, remettant en question des décennies de compréhension scientifique.
Dans de nombreux procédés électrochimiques industriels, des électrodes sont utilisées pour produire des carburants et des produits chimiques. Cependant, la formation de bulles sur les électrodes pose un problème : elles bloquent une partie de la surface, réduisant l’efficacité du processus de 10 à 25%.
Jusqu’à présent, les scientifiques pensaient que toute la zone couverte par une bulle était inactive. La nouvelle étude révèle que seule la zone de contact direct entre la bulle et l’électrode est réellement bloquée.
Une découverte qui change la donne
Pour comprendre le phénomène, l’équipe du MIT a créé différentes surfaces d’électrodes avec des motifs de points qui favorisent la formation de bulles de tailles variées. Ils ont également développé un outil logiciel basé sur l’intelligence artificielle pour analyser la formation des bulles.
Les résultats sont étonnants : de nouvelles bulles peuvent se former activement sous une bulle plus grande, prouvant que la zone n’est pas complètement inactive comme on le pensait auparavant.
Des implications concrètes pour l’industrie et l’environnement
La découverte a des implications importantes pour plusieurs secteurs industriels énergivores :
- La production d’hydrogène « vert »
- Les procédés de capture du carbone
- La production d’aluminium
- Le procédé chlore-alcali utilisé dans l’industrie chimique
Les industries mentionnées représentent une part significative de la consommation électrique mondiale. Par exemple, le procédé chlore-alcali à lui seul consomme 2% de l’électricité aux États-Unis.
« Notre travail démontre que l’ingénierie du contact et de la croissance des bulles sur les électrodes peut avoir des effets spectaculaires sur la façon dont les bulles se forment et quittent la surface. Le fait de savoir que la zone sous les bulles peut être considérablement active ouvre la voie à un nouvel ensemble de règles de conception pour les électrodes à haute performance afin d’éviter les effets délétères des bulles. » a indiqué le professeur d’ingénierie mécanique au MIT, Kripa Varanasi.
« La littérature plus large élaborée au cours des deux dernières décennies a suggéré que non seulement cette petite zone de contact, mais aussi toute la zone située sous la bulle est passivée », a ajouté Simon Rufer, étudiant diplômé au MIT. La nouvelle étude révèle « une différence significative entre les deux modèles, car elle modifie la façon de développer et de concevoir une électrode pour minimiser ces pertes ».
Vers des électrodes plus efficaces
Grâce à la nouvelle compréhension, les ingénieurs peuvent maintenant concevoir des surfaces d’électrodes qui minimisent la zone de contact des bulles plutôt que leur couverture globale. L’approche pourrait améliorer considérablement l’efficacité des processus et réduire la consommation d’énergie.
De plus, de nombreuses électrodes sont recouvertes de catalyseurs composés de métaux précieux comme le platine ou l’iridium. Une meilleure conception permettrait de réduire le gaspillage de matériaux coûteux.
L’équipe du MIT a rendu public son outil logiciel d’analyse des bulles. Les ingénieurs et scientifiques du monde entier peuvent désormais l’utiliser pour étudier et améliorer leurs propres processus électrochimiques. Grâce à leur outil, ils ont pu collecter « des quantités très importantes de données sur les bulles à la surface, leur emplacement, leur taille, leur vitesse de croissance, toutes ces choses différentes.
L’outil est désormais disponible gratuitement pour tout le monde via le dépôt GitHub.
En utilisant cet outil pour corréler les mesures visuelles de la formation et de l’évolution des bulles avec les mesures électriques de la performance de l’électrode, les chercheurs ont pu réfuter la théorie admise et montrer que seule la zone de contact direct est affectée. Des vidéos ont permis d’étayer cette hypothèse, en révélant de nouvelles bulles évoluant directement sous des parties d’une bulle plus importante.
L’avancée dans la compréhension des interactions entre les bulles et les électrodes permet d’envisager des améliorations significatives dans de nombreux secteurs industriels. Selon M. Varanasi, « les résultats de ce travail pourraient inspirer de nouvelles architectures d’électrodes qui non seulement réduiraient l’utilisation de matériaux précieux, mais amélioreraient également les performances globales de l’électrolyseur« , ce qui aurait des effets bénéfiques sur l’environnement à grande échelle.
Légende illustration : « Nos travaux démontrent que l’ingénierie du contact et de la croissance des bulles sur les électrodes peut avoir des effets spectaculaires », explique Kripa Varanasi. Crédit : Christine Daniloff, MIT
Article : ‘“Machine Learning-Guided Discovery of Gas Evolving Electrode Bubble Inactivation”’ / ( 10.1039/D4NR02628D ) – Massachusetts Institute of Technology – Publication dans la revue Nanoscale