Les matériaux quantiques : une solution pour les milliards de transistors des puces informatiques

Les matériaux quantiques : une solution pour les milliards de transistors des puces informatiques

Dans le domaine de la physique, il existe une catégorie de matériaux qui défient les lois de la physique classique : les matériaux quantiques. Leur compréhension et leur manipulation pourraient ouvrir la voie à des avancées significatives dans divers domaines technologiques.

Tous les matériaux sont constitués d’atomes. Ces atomes ont un noyau qui contient des protons et des neutrons, tandis que les électrons orbitent autour du noyau. La plupart des matériaux et leurs électrons obéissent aux lois de la physique classique.

Il existe une autre classe de matériaux pour lesquels la physique classique ne suffit pas à expliquer leurs propriétés. Ce sont les matériaux quantiques. Leurs propriétés ne peuvent être expliquées qu’en utilisant la mécanique quantique, une branche de la physique qui traite du comportement des choses au niveau atomique.

Les différentes catégories de matériaux quantiques

Les matériaux quantiques comprennent les supraconducteurs, où des paires d’électrons se déplacent ensemble ; les aimants, où le spin d’un électron influence le spin de son voisin ; les matériaux topologiques, où les électrons sur les surfaces des matériaux ont des propriétés exotiques ; et les matériaux à confinement quantique, où les propriétés des électrons sont déterminées par la taille du matériau.

Bien que ces matériaux puissent sembler compliqués et mystérieux, leurs propriétés inhabituelles pourraient être exploitées pour aider à résoudre des défis liés à la transmission de l’énergie et au stockage des données.

Les matériaux quantiques et l’informatique

Les puces informatiques sont composées de milliards de transistors, chacun pouvant être placé dans un état 0 ou 1, le code binaire utilisé dans les systèmes informatiques. Les opérations informatiques sont effectuées en changeant l’état du transistor.

Les transistors de pointe ont des dimensions de seulement quelques nanomètres, ce qui correspond à seulement quelques couches d’atomes. Réduire davantage les transistors peut mettre plus de puissance de calcul sur la même puce, mais nous atteignons les limites de ce qui peut être réalisé en utilisant des matériaux traditionnels. Une solution à ce problème est les matériaux bidimensionnels (2D).

Les matériaux quantiques et l’énergie

Une autre solution au problème de l’utilisation de l’énergie dans l’informatique est la spintronique. Dans un système spintronique, l’unité d’information n’est pas la charge de l’électron, mais le spin de l’électron. Changer la direction du spin de l’électron de «haut» à “bas” peut être beaucoup moins énergivore que de déplacer l’électron. Cela pourrait, à son tour, nous permettre d’effectuer des calculs et de stocker des informations en utilisant beaucoup moins d’énergie.

Une variété de matériaux quantiques sont des candidats pour la spintronique, y compris les points quantiques, les matériaux topologiques et les matériaux magnétiques.

En synthèse

Il est clair que les matériaux quantiques ont de nombreuses applications dans le domaine des technologies de l’énergie. Cependant, nous sommes actuellement limités par la disponibilité de matériaux qui répondent à nos besoins. Les chercheurs sont à la pointe de la prédiction, de la découverte, de la synthèse et de l’intégration de nouveaux matériaux quantiques dans de véritables dispositifs.

Pour une meilleure compréhension

1. Qu’est-ce que les matériaux quantiques ?

Les matériaux quantiques sont une classe de matériaux dont les propriétés ne peuvent être expliquées qu’en utilisant la mécanique quantique, une branche de la physique qui traite du comportement des choses au niveau atomique.

2. Quels sont les différents types de matériaux quantiques ?

Les matériaux quantiques comprennent les supraconducteurs, les aimants, les matériaux topologiques et les matériaux à confinement quantique.

3. Comment les matériaux quantiques peuvent-ils être utilisés en informatique ?

Les matériaux quantiques, en particulier les matériaux bidimensionnels, peuvent permettre de réduire la taille des transistors, augmentant ainsi la puissance de calcul sur une même puce.

4. Qu’est-ce que la spintronique et comment les matériaux quantiques contribuent ?

La spintronique est un système dans lequel l’unité d’information est le spin de l’électron, et non sa charge. Les matériaux quantiques, tels que les points quantiques, les matériaux topologiques et les matériaux magnétiques, sont des candidats pour la spintronique.

5. Quel est le rôle des supraconducteurs parmi les matériaux quantiques ?

Les supraconducteurs sont une classe de matériaux quantiques qui peuvent transmettre de l’énergie sans perte. Ils sont principalement utilisés pour fabriquer des aimants pour les machines d’imagerie par résonance magnétique.

Article adapté du contenu de l’auteure : Stephanie Law

Stephanie Law est professeur associé de développement de carrière à la faculté Norris B. McFarlane au département de science et d’ingénierie des matériaux et membre de la faculté de l’IEE. Son groupe de recherche synthétise des couches minces et des hétérostructures par épitaxie par faisceaux moléculaires pour des applications énergétiques. Ses travaux portent en particulier sur les matériaux photoniques et les métamatériaux couvrant le spectre électromagnétique du visible au térahertz. Ces matériaux ont des applications dans les cellules solaires, l’éclairage efficace, la récupération de la chaleur perdue, la photocatalyse, etc.

[ Rédaction ]

Articles connexes