L’informatique photonique : l’avenir des ordinateurs ultra-rapides ?

L'informatique photonique : l'avenir des ordinateurs ultra-rapides ?

L’incessante quête de systèmes informatiques toujours plus rapides, plus petits et plus performants a conduit les fabricants à concevoir des transistors toujours plus minuscules, aujourd’hui intégrés par dizaines de milliards dans les puces informatiques.

Cette stratégie s’est jusqu’à présent avérée efficace. Les ordinateurs n’ont jamais été aussi puissants qu’aujourd’hui. Cependant, il existe des limites : les transistors traditionnels en silicium ne peuvent pas être réduits indéfiniment en raison des difficultés de fabrication de dispositifs qui ne font, dans certains cas, que quelques dizaines d’atomes de large. En conséquence, les chercheurs ont commencé à développer de nouvelles technologies informatiques, comme les ordinateurs quantiques, qui ne dépendent pas des transistors en silicium.

Une autre voie de recherche est celle de l’informatique photonique, qui utilise la lumière à la place de l’électricité, un peu à la manière dont les câbles à fibres optiques ont remplacé les fils de cuivre dans les réseaux informatiques.

Une nouvelle recherche menée par Alireza Marandi, professeur adjoint en génie électrique et physique appliquée à Caltech, utilise du matériel optique pour réaliser des automates cellulaires. Il s’agit d’un type de modèle informatique composé d’un “monde” (une zone quadrillée) contenant des “cellules” (chaque carré de la grille) qui peuvent vivre, mourir, se reproduire et évoluer en créatures multicellulaires aux comportements uniques.

Selon Marandi, ces automates sont idéalement adaptés aux technologies photoniques.

Si vous comparez une fibre optique avec un câble en cuivre, vous pouvez transférer des informations beaucoup plus rapidement avec une fibre optique“, indique le Pr. Marandi. “La grande question est de savoir si nous pouvons utiliser cette capacité d’information de la lumière pour le calcul, et pas seulement pour la communication ? Pour répondre à cette question, nous nous intéressons particulièrement aux architectures matérielles de calcul non conventionnelles qui sont mieux adaptées à la photonique qu’à l’électronique numérique.

Les automates cellulaires sont des modèles computationnels. Pour les comprendre, il est plus utile de les voir comme des cellules simulées qui suivent un ensemble très basique de règles (chaque type d’automate a son propre ensemble de règles). De ces règles simples peuvent émerger des comportements incroyablement complexes.

Le jeu de la vie, ou le jeu de la vie de Conway, est l’un des automates cellulaires les plus connus, créé par le mathématicien anglais John Conway en 1970. Il a seulement quatre règles qui sont appliquées à une grille de “cellules” qui peuvent être vivantes ou mortes.

Ces règles sont :

  • Toute cellule vivante avec moins de deux voisins vivants meurt, comme si elle était sous-peuplée.
  • Toute cellule vivante avec plus de trois voisins vivants meurt, comme si elle était surpeuplée.
  • Toute cellule vivante avec deux ou trois voisins vivants vit jusqu’à la génération suivante.
  • Toute cellule morte avec exactement trois voisins vivants reprend vie, comme par reproduction.
jeu de la vie

Un ordinateur qui exécute le jeu de la vie applique ces règles à l’univers dans lequel les cellules vivent à intervalles réguliers, chaque intervalle étant considéré comme une génération.

En quelques générations, ces règles simples conduisent les cellules à s’organiser en formes complexes avec des noms évocateurs comme “pain“, “ruche“, “crapaud” et “vaisseau spatial lourd“.

Le Pr. Marandi explique que les automates cellulaires sont bien adaptés à l’informatique photonique pour plusieurs raisons. Comme le traitement de l’information se fait à un niveau extrêmement local (dans les automates cellulaires, les cellules n’interagissent qu’avec leurs voisins immédiats), ils éliminent le besoin de beaucoup de matériel qui rend l’informatique photonique difficile : les différentes portes, commutateurs et dispositifs qui sont sinon nécessaires pour déplacer et stocker l’information basée sur la lumière.

De plus, la nature haut débit de l’informatique photonique signifie que les automates cellulaires peuvent fonctionner incroyablement rapidement.

L'informatique photonique : l'avenir des ordinateurs ultra-rapides ?

Dans le dispositif d’informatique photonique du Pr. Marandi, les cellules de l’automate cellulaire ne sont que de très brèves impulsions de lumière, ce qui peut permettre une opération jusqu’à trois ordres de grandeur plus rapide que les ordinateurs numériques les plus rapides. Alors que ces impulsions de lumière interagissent entre elles dans une grille matérielle, elles peuvent traiter l’information à la volée sans être ralenties par toutes les couches qui sous-tendent l’informatique traditionnelle.

La nature ultra-rapide des opérations photoniques, et la possibilité de réaliser sur puce des automates cellulaires photoniques, pourraient conduire à la prochaine génération d’ordinateurs qui peuvent effectuer des tâches importantes beaucoup plus efficacement que les ordinateurs numériques électroniques“, conclut le Pr. Marandi.

L’article décrivant ces travaux, intitulé “Photonic Elementary Cellular Automata for Simulation of Complex Phenomena” (Automates cellulaires élémentaires photoniques pour la simulation de phénomènes complexes), est publié dans le numéro du 30 mai de la revue Light : Science & Applications. L’auteur principal est Gordon H.Y. Li (MS ’22), étudiant diplômé en physique appliquée, et les coauteurs sont Christian R. Leefmans, étudiant diplômé en physique appliquée, et James Williams, étudiant diplômé en génie électrique.

[ Rédaction ]

Articles connexes