Lorsque le soleil se reflète sur les eaux usées, la plupart d’entre nous n’aperçoivent que des déchets. Mais pour l’équipe du professeur GAO Xiang de l’Institut de Technologie Avancée de Shenzhen (SIAT) de l’Académie des Sciences de Chine et du professeur LU Lu de l’Institut de Technologie de Harbin, ils y voient une opportunité.
Ils ont en effet développé une méthode innovante qui utilise la lumière du soleil pour transformer les contaminants des eaux usées en produits chimiques précieux. Cette méthode pourrait bien être la clé d’une production chimique durable et respectueuse de l’environnement.
Une avancée significative dans la production chimique
La production chimique conventionnelle repose sur des processus énergivores. Les biohybrides à semi-conducteurs, qui intègrent des matériaux efficaces pour la collecte de la lumière avec des cellules vivantes sont apparus comme une avancée pour utiliser l’énergie solaire dans la production chimique.
Le défi réside dans la recherche d’une approche économiquement viable et respectueuse de l’environnement pour augmenter cette technologie.
Transformer les contaminants en produits chimiques précieux
Dans cette étude, les chercheurs ont cherché à convertir les polluants des eaux usées en biohybrides à semi-conducteurs directement dans l’environnement des eaux usées.
Le concept consiste à utiliser le carbone organique, les métaux lourds et les composés de sulfate présents dans les eaux usées comme matières premières pour construire ces biohybrides, puis à les convertir en produits chimiques précieux.
Surmonter les défis
Les eaux usées industrielles réelles varient souvent dans leur composition de polluants organiques majeurs, de métaux lourds et de polluants complexes, qui sont souvent toxiques pour les cellules bactériennes et difficiles à métaboliser efficacement.
Pour surmonter cette problématique, les scientifiques ont sélectionné une bactérie marine à croissance rapide, Vibrio natriegens, qui possède une tolérance exceptionnelle pour une concentration élevée de sel et une capacité à utiliser diverses sources de carbone.
En synthèse
En modifiant une souche de V. natriegens, les chercheurs ont généré du sulfure d’hydrogène, qui a joué un rôle essentiel en facilitant la production de nanoparticules de CdS qui absorbent efficacement la lumière. Ces nanoparticules, réputées pour leur biocompatibilité, ont permis la création in situ de semi-conducteurs biohybrides et ont permis à la bactérie non photosynthétique d’utiliser la lumière.
Les résultats ont montré que ces biohybrides activés par la lumière du soleil présentaient une production de butanediol ( BDO ) nettement améliorée, dépassant les rendements réalisables par les cellules bactériennes seules. De plus, le processus a montré une capacité à être mis à l’échelle, atteignant une production de BDO alimentée par le soleil à une échelle substantielle de 5 litres en utilisant de véritables eaux usées.
Pour une meilleure compréhension
Qu’est-ce que la production chimique conventionnelle ?
La production chimique conventionnelle repose sur des processus énergivores. Elle utilise généralement des matières premières non renouvelables et produit des déchets qui peuvent être nocifs pour l’environnement.
Qu’est-ce qu’un biohybride à semi-conducteurs ?
Un biohybride à semi-conducteurs est une combinaison de matériaux capables de collecter la lumière et de cellules vivantes. Ces systèmes sont capables d’utiliser l’énergie solaire pour la production chimique.
Comment les contaminants peuvent être transformés en produits chimiques précieux ?
Les chercheurs ont proposé une méthode pour convertir les polluants des eaux usées en biohybrides à semi-conducteurs directement dans l’environnement des eaux usées. Le concept consiste à utiliser le carbone organique, les métaux lourds et les composés de sulfate présents dans les eaux usées comme matières premières pour construire ces biohybrides, puis à les convertir en produits chimiques précieux.
Quels sont les défis de cette approche ?
Les eaux usées industrielles réelles varient souvent dans leur composition de polluants organiques majeurs, de métaux lourds et de polluants complexes, qui sont souvent toxiques pour les cellules bactériennes et difficiles à métaboliser efficacement. Pour surmonter cela, les chercheurs ont sélectionné une bactérie marine à croissance rapide, Vibrio natriegens, qui a une tolérance exceptionnelle pour une concentration élevée de sel et une capacité à utiliser diverses sources de carbone.
Quels sont les résultats de cette recherche ?
Les résultats ont montré que ces biohybrides activés par la lumière du soleil présentaient une production de BDO nettement améliorée, dépassant les rendements réalisables par les cellules bactériennes seules. De plus, le processus a montré une capacité à être mis à l’échelle, atteignant une production de BDO alimentée par le soleil à une échelle substantielle de 5 litres en utilisant de véritables eaux usées.
GAO Xiang, LU Lu, Institut de Technologie Avancée de Shenzhen, Académie des Sciences de Chine, Institut de Technologie de Harbin, Nature Sustainability
Légende illustration principale : La fabrication de produits chimiques verts pour une vie plus verte. Credit : SIAT
Article : « Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids » – DOI:10.1038/s41893-023-01233-2