Un filtre intelligent de 10 000 pixels pour un traitement visuel inédit 

Un filtre intelligent de 10 000 pixels pour un traitement visuel inédit 

Les chercheurs travaillant sur la prochaine génération de technologies informatiques visent à apporter de la lumière dans ce domaine, au sens propre comme au figuré. L’informatique optique, qui repose sur des particules de lumière appelées photons, devrait offrir des alternatives aux approches électroniques traditionnelles. De tels systèmes, ou des composants basés sur la lumière de systèmes hybrides conservant également des parties électroniques, pourraient être plus rapides, consommer moins d’énergie et traiter les informations visuelles de manière plus efficace grâce à un traitement simultané et parallèle.

Les défis de l’informatique optique

Jusqu’à présent, l’informatique optique a été confrontée à une limitation pour obtenir des réponses non linéaires, ce qui signifie produire des signaux qui ne sont pas directement proportionnels à l’entrée. La non-linéarité rend possibles les applications informatiques universelles, y compris l’intelligence artificielle.

Les matériaux et dispositifs non linéaires en cours de développement ont besoin d’une quantité importante de lumière pour fonctionner. Auparavant, cela nécessitait des lasers de haute puissance qui ne fonctionnent que dans une bande étroite du spectre électromagnétique, absorbant la lumière au fil du temps, ce qui ralentit le traitement, ou utilisant des matériaux énergivores qui absorbent beaucoup de lumière mais excluent les applications nécessitant une efficacité ou une transparence lumineuse.

Une percée collaborative de la CNSI

Désormais, une étude collaborative récente menée par des membres du California NanoSystems Institute de l’UCLA (CNSI) a présenté un dispositif qui surmonte ces obstacles. Dans une avancée majeure vers l’informatique optique pour le traitement de l’information visuelle, les chercheurs du CNSI ont montré qu’un minuscule réseau de pixels transparents pouvait produire une réponse non linéaire rapide et à large bande à partir d’une lumière ambiante de faible puissance.

L’équipe a également démontré une application qui combine leur dispositif avec un appareil photo de smartphone pour réduire les reflets dans les images. L’étude a été publiée dans Nature Communications.

Selon Aydogan Ozcan, professeur d’innovation en ingénierie Volgenau à l’UCLA Samueli School of Engineering et co-auteur correspondant, « Les non-linéarités optiques sont loin derrière ce dont nous avons besoin pour les applications de calcul visuel. Nous avons besoin de non-linéarités à faible puissance, à large bande, à faibles pertes et rapides pour que les systèmes optiques répondent à nos besoins en matière de calcul visuel. Ce travail contribue à combler cette lacune. »

De multiples applications potentielles

Les applications potentielles de cette technologie, au-delà de la réduction des reflets validée dans l’étude, couvrent une variété d’utilisations grand public et industrielles : amélioration de la détection pour les véhicules autonomes, caméras qui reconnaissent certains objets tout en en cachant d’autres, cryptage d’images, et détection efficace des défauts dans les chaînes de montage robotisées, entre autres.

Le dispositif pourrait offrir de nombreux avantages. Par exemple, les images entrantes pourraient être traitées sans conversion en signal numérique, accélérant les résultats et réduisant la quantité de données envoyées dans le cloud pour un traitement et un stockage numériques.

Les chercheurs envisagent de relier leur technologie à des caméras bon marché et de compresser les données pour produire des images d’une résolution nettement supérieure à ce qui était réalisé auparavant, et de capturer avec plus de précision et d’exactitude des informations utiles sur la disposition des objets dans l’espace et les spectres électromagnétiques présents dans la lumière.

Un dispositif innovant et transparent

Le dispositif de l’étude est un plan transparent mesurant 1 cm carré. Il utilise un matériau semi-conducteur 2D, rendu sous forme de film de seulement quelques atomes d’épaisseur, qui a été développé par Xiangfeng Duan, professeur de chimie et de biochimie à l’UCLA College et co-auteur correspondant.

La finesse du matériau le rend transparent, tout en conservant des qualités qui permettent aux photons entrants de réguler efficacement la conductivité électrique. L’équipe de recherche a couplé le semi-conducteur 2D avec une couche de cristaux liquides et l’a rendu fonctionnel avec un réseau d’électrodes.

Le résultat est un filtre intelligent comprenant 10 000 pixels, chacun étant capable de s’assombrir de manière sélective et rapide de façon non linéaire lorsqu’il est exposé à une lumière ambiante à large bande.

Comme l’explique Xiangfeng Duan, « Fondamentalement, nous voulons utiliser un matériau qui n’absorbe pas beaucoup de lumière, mais qui produit néanmoins un signal suffisant pour traiter la lumière. Chaque pixel peut passer de complètement transparent à partiellement transparent puis opaque. Il ne faut qu’un petit nombre de photons pour changer radicalement la transparence. »

Une collaboration rendue possible grâce à un financement

Cette recherche a été rendue possible par le Fonds d’innovation de la Fondation Elman au CNSI. Une subvention a permis le recrutement du premier auteur de l’étude, le chercheur postdoctoral Dehui Zhang, qui a fait progresser les travaux dans le cadre des groupes de recherche d’Ozcan et de Xiangfeng Duan.

Dehui Zhang, et le projet, ont permis de relier des membres du corps professoral qui se connaissaient comme collègues depuis plus d’une décennie mais n’avaient pas encore exploré comment ils pouvaient faire équipe.

« Cette opportunité unique a conduit à une collaboration très, très passionnante », a déclaré Xiangfeng Duan. « C’est vraiment un plaisir de penser en dehors de nos zones de confort. Cela m’a montré qu’en tant que développeur de matériaux, je peux bénéficier d’aller au-delà d’une étude fondamentale ou d’une preuve de concept pour explorer des applications. »

« Nous espérons continuer sur cette voie », a-t-il ajouté. « Ce n’est que le début. Il y a certainement encore beaucoup à faire. »

Légende illustration : Ce dispositif expérimental utilise un matériau semi-conducteur 2D mis au point par Xiangfeng Duan, UCLA de chimie et de biochimie.

[ Rédaction ]

Articles connexes