MME2026 728x90
lundi, février 2, 2026
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Un matériau promet une efficacité quantique de plus de 190 % dans les cellules solaires

Un matériau promet une efficacité quantique de plus de 190 % dans les cellules solaires

par La rédaction
15 avril 2024
en Renouvelable, Solaire

Des chercheurs américains ont développé un matériau qui démontre le potentiel d’augmenter considérablement l’efficacité des panneaux solaires. Ce nouveau matériau quantique vise à améliorer d’une manière significative la conversion de l’énergie solaire, jouant ainsi un rôle crucial dans la réponse aux besoins énergétiques mondiaux.

Un prototype utilisant ce matériau comme couche active dans une cellule solaire présente une absorption photovoltaïque moyenne de 80%, un taux élevé de génération de porteurs photoexcités et une efficacité quantique externe (EQE) allant jusqu’à 190%, un niveau sans précédent. Cette mesure dépasse largement la limite théorique d’efficacité de Shockley-Queisser pour les matériaux à base de silicium et propulse le domaine des matériaux quantiques pour le photovoltaïque vers de nouveaux sommets.

Chinedu Ekuma, professeur de physique, qui a publié un article sur le développement du matériau avec Srihari Kastuar, doctorant à Lehigh, dans la revue Science Advances, souligne : « Ce travail représente un bond en avant significatif dans notre compréhension et notre développement de solutions énergétiques durables, mettant en évidence des approches innovantes qui pourraient redéfinir l’efficacité et l’accessibilité de l’énergie solaire dans un avenir proche. »

Des états de bande intermédiaires distinctifs

Le bond d’efficacité du matériau est en grande partie attribuable à ses «états de bande intermédiaires» distinctifs, des niveaux d’énergie spécifiques positionnés dans la structure électronique du matériau d’une manière qui les rend idéaux pour la conversion de l’énergie solaire.

Ces états ont des niveaux d’énergie situés dans les sous-bandes interdites optimales – des plages d’énergie où le matériau peut efficacement absorber la lumière du soleil et produire des porteurs de charge – d’environ 0,78 et 1,26 électron-volts. De plus, le matériau offre des performances particulièrement élevées en termes d’absorption dans les régions infrarouge et visible du spectre électromagnétique.

Dépasser les limites traditionnelles de l’EQE

Dans les cellules solaires traditionnelles, l’EQE maximale est de 100%, représentant la génération et la collecte d’un électron pour chaque photon absorbé de la lumière du soleil. Certains matériaux et configurations avancés développés ces dernières années ont toutefois démontré la capacité de générer et de collecter plus d’un électron à partir de photons à haute énergie, représentant une EQE de plus de 100%.

Bien que ces matériaux à génération d’excitons multiples (MEG) ne soient pas encore largement commercialisés, ils ont le potentiel d’augmenter considérablement l’efficacité des systèmes d’énergie solaire. Dans le matériau développé par Lehigh, les états de bande intermédiaires permettent de capturer l’énergie des photons qui est perdue par les cellules solaires traditionnelles, notamment par réflexion et production de chaleur.

Tirer parti des lacunes de van der Waals

Les chercheurs ont développé ce nouveau matériau en tirant parti des «lacunes de van der Waals», des espaces atomiquement petits entre les matériaux bidimensionnels en couches. Ces lacunes peuvent confiner des molécules ou des ions, et les spécialistes des matériaux les utilisent couramment pour insérer, ou « intercaler », d’autres éléments afin d’ajuster les propriétés des matériaux.

Pour développer leur nouveau matériau, les chercheurs de Lehigh ont inséré des atomes de cuivre zerovalent entre des couches d’un matériau bidimensionnel composé de séléniure de germanium (GeSe) et de sulfure d’étain (SnS).

De la modélisation informatique à la preuve de concept

Ekuma, expert en physique computationnelle de la matière condensée, a développé le prototype comme preuve de concept après une modélisation informatique approfondie du système qui a démontré un potentiel théorique prometteur.

«Sa réponse rapide et son efficacité accrue indiquent fortement le potentiel du GeSe/SnS intercalé au Cu en tant que matériau quantique pour une utilisation dans des applications photovoltaïques avancées, offrant une voie pour l’amélioration de l’efficacité dans la conversion de l’énergie solaire», a-t-il précisé. «C’est un candidat prometteur pour le développement de cellules solaires de nouvelle génération à haute efficacité, qui joueront un rôle crucial dans la réponse aux besoins énergétiques mondiaux.»

Vers une intégration future dans les systèmes d’énergie solaire

Bien que l’intégration du matériau quantique nouvellement conçu dans les systèmes d’énergie solaire actuels nécessitera des recherches et des développements supplémentaires, Chinedu Ekuma souligne que la technique expérimentale utilisée pour créer ces matériaux est déjà très avancée. Les scientifiques ont, au fil du temps, maîtrisé une méthode qui insère avec précision des atomes, des ions et des molécules dans les matériaux.

Cette avancée scientifique ouvre de nouvelles perspectives pour l’optimisation de l’efficacité des cellules solaires, contribuant ainsi à relever les défis énergétiques de notre époque. Les travaux de l’équipe de l’Université de Lehigh témoignent du potentiel des matériaux quantiques pour révolutionner le domaine du photovoltaïque et offrir des solutions durables pour un avenir énergétique plus propre.

Articles à explorer

Synergy of ion-enhanced and surface adsorbed HF/H 2 O for etching

Un nouveau procédé de gravure de semi-conducteurs, avec une vitesse multipliée par cinq

13 janvier 2026
De nouveaux matériaux pourraient améliorer l'efficacité énergétique de la microélectronique

De nouveaux matériaux pourraient améliorer l’efficacité énergétique de la microélectronique

26 décembre 2025

Légende illustration : Schéma de la cellule solaire à couche mince avec CuxGeSe/SnS comme couche active. Crédit : Ekuma Lab / Lehigh University

Article : « Chemically Tuned Intermediate Band States in Atomically Thin CuxGeSe/SnS Quantum Material for Photovoltaic Applications » – DOI: 10.1126/sciadv.adl6752

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: cellule solaireefficaciteGeSeSnS
Article précédent

Première mondiale : le magnétisme induit à température ambiante

Article suivant

Des absorbeurs solaires efficaces même à 1000°C : le pari de chercheurs

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Solaire

Dourges accueille la plus grande toiture solaire d’Europe sur un entrepôt logistique

il y a 3 jours
Légende : Installation solaire en toiture développée par Sunrock sur le site logistique et d’entreposage de Panattoni à Ormes (Loiret) - Crédit photo : Panattoni
Solaire

Panattoni et Sunrock accélèrent la solarisation des entrepôts français

il y a 4 jours
Biogaz

Quand la méthanisation « francilienne » recherche l’optimisation agronomique

il y a 5 jours
Professor Dr. Carsten Streb (l.) and Dr. Soressa Abera Chala of the Department of Chemistry at JGU who developed the new
Hydrogène

Une production respectueuse de formiate et d’hydrogène à partir du glycérol, un déchet industriel

il y a 6 jours
E.Leclerc démocratise la conversion à l'E85 avec des boîtiers à bas prix
Renouvelable

E.Leclerc démocratise la conversion à l’E85 avec des boîtiers à bas prix

il y a 1 semaine
Le boom solaire a un secret polluant. Voici comment éviter une nouvelle montagne de déchets non recyclables
Solaire

Le boom solaire a un secret polluant. Voici comment éviter une nouvelle montagne de déchets non recyclables

il y a 1 semaine
L’Union européenne franchit un cap historique : les renouvelables dépassent les énergies fossiles
Renouvelable

L’Union européenne franchit un cap historique : les renouvelables dépassent les énergies fossiles

il y a 1 semaine
La Chine déploie une éolienne offshore géante de 20 mégawatts
Eolien

La Chine déploie une éolienne offshore géante de 20 mégawatts

il y a 2 semaines
Plus d'articles
Article suivant
Des absorbeurs solaires efficaces même à 1000°C : le pari de chercheurs

Des absorbeurs solaires efficaces même à 1000°C : le pari de chercheurs

L'espoir d'un traitement innovant pour les troubles neurologiques

L'espoir d'un traitement innovant pour les troubles neurologiques

Un filtre intelligent de 10 000 pixels pour un traitement visuel inédit 

Un filtre intelligent de 10 000 pixels pour un traitement visuel inédit 

MME2026 300x600

Inscription newsletter

Tendance

Voyager 1, la sonde légendaire, s’apprête à franchir le cap historique du jour-lumière
Spatial

Voyager 1, la sonde légendaire, s’apprête à franchir le cap historique du jour-lumière

par La rédaction
2 février 2026
0

Une étape cosmique inédite se profile à l’horizon 2026. Lancée il y a près d’un demi-siècle, la...

Dor Tillinger and Wonbae Lee, two researchers in the Penn State College of Engineering, prepare a glass substrate with m

La biologie de l’anguille électrique inspire une puissante batterie en gel

2 février 2026
Et si on transformait les mégots en supercondensateurs hautes performances

Et si on transformait les mégots en supercondensateurs hautes performances

2 février 2026
Using an affordable 3D printer and the CRAFT method, researchers created a model human hand from a single feedstock

Impression 3D : des répliques abordables et réalistes, aussi complexes qu’une main humaine

2 février 2026
Taklamakan rim with shrublands as it looks today.

Les arbustes réduisent les émissions de carbone dans le plus grand désert de Chine

2 février 2026

Points forts

Impression 3D : des répliques abordables et réalistes, aussi complexes qu’une main humaine

Les arbustes réduisent les émissions de carbone dans le plus grand désert de Chine

Un nouveau réfrigérateur quantique tire parti du bruit problématique

Des mesures quantiques avec des nuages atomiques intriqués

Le grand froid, menace silencieuse pour les infrastructures françaises

Le Grand Paris Express déploie un tunnelier reconditionné pour la ligne 15 Ouest

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

Voyager 1, la sonde légendaire, s’apprête à franchir le cap historique du jour-lumière

Voyager 1, la sonde légendaire, s’apprête à franchir le cap historique du jour-lumière

2 février 2026
Dor Tillinger and Wonbae Lee, two researchers in the Penn State College of Engineering, prepare a glass substrate with m

La biologie de l’anguille électrique inspire une puissante batterie en gel

2 février 2026
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com