Le laser à cascade quantique mesure l’éthanol

Les lasers à cascade quantique peuvent mesurer les molécules les plus petites avec une grande précision. Mais avec des molécules de gaz plus grosses, la technologie a échoué – jusqu’à présent ! Les chercheurs de l’Empa ont réussi à quantifier l’éthanol, une molécule organique importante, à l’aide d’un tel laser. En collaboration avec l’Institut fédéral de métrologie (METAS), une équipe de chercheurs a mis au point avec succès une méthode pour déterminer la concentration d’éthanol dans un mélange gazeux contenant une très forte proportion de vapeur d’eau et de dioxyde de carbone.

La spectrométrie laser à cascade quantique est maintenant une méthode établie pour mesurer efficacement et précisément différentes concentrations de gaz. Jusqu’à présent, les appareils laser ont particulièrement bien réussi à mesurer de petites molécules, telles que les polluants atmosphériques gazeux ou les gaz à effet de serre. Les chercheurs de l’Empa ont toutefois réussi à optimiser un spectromètre laser afin de pouvoir mesurer de plus grosses molécules.

Nous avons pu visualiser la structure fine de l’absorption infrarouge des molécules“, explique Lukas Emmenegger, responsable du département Pollution de l’air / Technologie environnementale. Afin de déterminer les concentrations des différentes molécules d’un mélange gazeux, un faisceau de laser est projeté à travers une cellule dite à réflexion multiple sur le mélange gazeux, la lumière du laser étant ensuite absorbée par les molécules du gaz. Plus l’absorption de la lumière est importante, plus la concentration des molécules concernées est élevée. Afin de pouvoir quantifier de plus grosses molécules, les chercheurs ont utilisé un laser à très haute résolution, réduit la pression de l’échantillon de gaz et minutieusement examiné les données. En conséquence, les déviations les plus fines des spectres sont devenues visibles (voir graphique).

Spectre d’absorption simulé de l’haleine avec une légère augmentation de la teneur en alcool. La spec-troscopie laser peut également être utilisée pour visualiser les structures fines de l’éthanol (ligne rouge) qui permettent des mesures sélectives et sensibles.

Une coopération réussie

Cette nouvelle réalisation des chercheurs de l’Empa connaît un tel succès qu’elle est déjà utilisée. En collaboration avec l’Institut fédéral de métrologie (METAS), l’équipe a développé un appareil permettant de comparer les gaz de référence utilisés pour verifiér les appareils de mesure d’alcool. La concentration d’éthanol dans l’haleine synthétique – un mélange d’éthanol, d’eau, de dioxyde de carbone et d’azote – est mesurée beaucoup plus précisément qu’avec les méthodes précédentes. Les appareils de mesure de l’alcool utilisés par les policiers, par exemple, sont homologués et étalonnés par METAS.

Différentes méthodes de production de gaz de référence sont utilisées dans le monde entier. Cependant, ces méthodes donnent des résultats différents : C’est une solution insatisfaisante, car une différence de quelques pour cent peut avoir un grand effet lors de l’étalonnage des instruments de mesure de l’alcool. Afin de garantir des résultats de mesure uniformes et comparables, une méthode de référence définie avec précision est prescrite en Suisse dans laquelle un gaz d’étalonnage est produit par saturation avec un mélange alcool-eau.

Données fiables et uniformes

Grâce au laser à cascade quantique, ces gaz de référence peuvent désormais être comparés avec précision et fiabilité “, explique Emmenegger. Il s’agit là d’une tâche importante, car il est également essentiel pour les fabricants d’instruments de savoir quels mélanges de gaz de référence sont comparés. Cela peut conduire à une situation dans laquelle l’instrument avec le même ajustement remplit les exigences dans un pays mais pas dans un autre, simplement parce que le pays en question se calibre en utilisant une méthode différente. Une mesure fiable avec le laser à cascade quantique peut aider à normaliser les systèmes de référence afin que les exigences puissent être satisfaites de la même manière dans différents pays.

Cependant, Emmenegger et son équipe pensent déjà à l’avenir car la méthode de mesure précise de différentes molécules organiques de tailles variées offre un large éventail d’autres applications. Grâce au projet commun avec METAS, les chercheurs ont pu développer une approche qui permet de nombreuses autres applications, comme l’analyse médicale de l’air respirable ou la surveillance environnementale.

Auteur : CORNELIA ZOGG

Partagez l'article

 



[ Article repris avec l'aimable autorisation ]

Articles connexes

avatar
  Souscrire  
plus récents plus anciens plus de votes
Me notifier des
zelectron
Invité
zelectron

et pour mesurer un léger trouble cognitif ?