Au cours de la dernière décennie, les progrès de l’impression 3D ont ouvert de nouvelles possibilités aux bio-ingénieurs pour construire des tissus et des structures cardiaques. Leurs objectifs sont notamment de créer de meilleures plateformes in vitro pour découvrir de nouvelles thérapies contre les maladies cardiaques, la principale cause de décès aux États-Unis, responsable d’environ un décès sur cinq au niveau national, et d’utiliser des tissus cardiaques imprimés en 3D pour évaluer les traitements les plus efficaces pour les patients individuels.
Un objectif plus lointain est de fabriquer des tissus implantables capables de guérir ou de remplacer des structures défectueuses ou malades à l’intérieur du cœur d’un patient.
Une encre innovante pour une impression réussie
Dans une étude publiée dans Nature Materials, les chercheurs de la Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) ont présenté le développement d’une nouvelle encre à base d’hydrogel infusée de fibres de gélatine. Cette dernière permet l’impression 3D d’un ventricule cardiaque fonctionnel qui reproduit le battement d’un cœur humain.
Les chercheurs ont découvert que cette encre à gel infusé de fibres permet aux cellules musculaires cardiaques de s’aligner et de battre en coordination, à la manière d’une chambre cardiaque humaine.
« Les gens ont essayé de reproduire les structures et fonctions des organes pour tester la sécurité et l’efficacité des médicaments dans le but de prédire ce qui pourrait se passer en milieu clinique », explique Suji Choi, chercheuse associée à SEAS et auteure de l’article. Cependant, jusqu’à présent, les techniques d’impression 3D seules n’ont pas réussi à réaliser un alignement physiologiquement pertinent des cardiomyocytes, les cellules responsables de la transmission des signaux électriques de manière coordonnée pour contracter le muscle cardiaque.
La force réside dans l’ajout de fibres
L’innovation réside dans l’ajout de fibres à l’encre imprimable. « L’encre à gel infusé de fibres (FIG) est capable de s’écouler à travers la buse d’impression mais, une fois la structure imprimée, elle conserve sa forme en 3D », souligne Choi. Elle a ainsi découvert qu’il était possible d’imprimer une structure semblable à un ventricule et d’autres formes complexes en 3D sans utiliser de matériaux de support supplémentaires ou de structures porteuses.
Pour créer cette encre FIG, Choi a utilisé une technique de filage à jet rotatif développée par le laboratoire de Parker qui fabrique des matériaux microfibres en utilisant une approche similaire à celle utilisée pour filer du coton.
En utilisant le jet rotatif pour filer des fibres de gélatine, Choi a produit une feuille de matériau qui ressemble à du coton. Ensuite, elle a utilisé la sonification – des ondes sonores – pour briser cette feuille en fibres d’environ 80 à 100 micromètres de long et d’environ 5 à 10 micromètres de diamètre. Puis, elle a dispersé ces fibres dans une encre à base d’hydrogel.
Des structures 3D plus proches de la réalité
En imprimant des structures 2D et 3D à l’aide de l’encre FIG, Choi a pu faire aligner les cardiomyocytes dans la direction des fibres contenues dans l’encre. En contrôlant la direction de l’impression, elle pouvait ainsi contrôler l’alignement des cellules musculaires cardiaques.
Quand elle a appliqué une stimulation électrique aux structures imprimées en 3D avec de l’encre FIG, elle a découvert qu’elle déclenchait une vague de contractions coordonnées alignée avec la direction des fibres. Dans une structure en forme de ventricule, « il était très excitant de voir la chambre pomper de manière similaire à la façon dont les vrais ventricules du cœur pompent », dit Choi.
En expérimentant avec plus de directions d’impression et de formules d’encre, elle a constaté qu’elle pouvait générer des contractions encore plus fortes à l’intérieur des formes similaires à des ventricules.
En synthèse
Comparé au véritable cœur, le modèle de ventricule mis au point par Choi et son équipe est simplifié et miniaturisé. L’équipe travaille désormais à la construction de tissus cardiaques encore plus réalistes avec des parois musculaires plus épaisses capables de pomper le fluide avec plus de force. Bien qu’il ne soit pas aussi puissant que le tissu cardiaque réel, le ventricule imprimé en 3D pourrait pomper un volume de fluide 5 à 20 fois supérieur à celui des chambres cardiaques imprimées en 3D précédemment.
Pour une meilleure compréhension
Qu’est-ce que l’encre FIG et comment a-t-elle été créée ?
L’encre FIG est une nouvelle encre à base d’hydrogel infusée de fibres de gélatine. Elle a été créée par Suji Choi, chercheuse associée à la Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). Pour ce faire, elle a utilisé une technique de filage à jet rotatif pour fabriquer des fibres de gélatine, puis les a dispersées dans une encre à base d’hydrogel.
Qu’est-ce que l’impression 3D a apporté aux études sur les maladies cardiaques ?
L’impression 3D a permis la création de structures cardiaques similaires à celles des humains pour tester l’efficacité des traitements contre les maladies cardiaques. Elle offre la possibilité de créer des tissus cardiaques réalistes qui peuvent être utilisés pour évaluer l’efficacité potentielle des traitements chez les patients individuels.