Découverte : mesurez la pression avec précision jusqu’à 1300 K

Découverte : mesurez la pression avec précision jusqu'à 1300 K

L’évolution des technologies de combustion, essentielle à l’optimisation des performances des moteurs aéronautiques, bénéficie désormais d’une avancée significative grâce à la recherche menée par une équipe internationale de scientifiques.

Les moteurs aérospatiaux contemporains tendent vers des combustions à haute température et haute pression pour améliorer l’efficacité thermodynamique. La mesure précise de la pression est cruciale pour le suivi des performances des moteurs et le diagnostic des pannes. Toutefois, les capteurs de pression traditionnels, en contact direct avec le milieu de combustion, perturbent les flux de combustion et sont limités par la tolérance à la température des matériaux des capteurs.

Dans cette étude révolutionnaire, les chercheurs ont développé une méthode de détection de la pression non intrusive adaptée aux environnements à haute température, testée jusqu’à 1300 K. La recherche, dirigée par le professeur GAO Xiaoming et le professeur LIU Kun de l’Institut de Physique de Hefei (HFIPS), relevant de l’Académie Chinoise des Sciences (CAS), se concentre sur l’élimination de l’effet de la concentration moléculaire sur les mesures de pression des gaz dans des conditions de haute température.

Le principe de la méthode

Les scientifiques ont découvert qu’il était possible d’éliminer la variable de concentration en couplant les largeurs de raie élargies par collision de deux lignes d’absorption. Cette découverte permet de réaliser des mesures de pression indépendantes de la concentration.

En se concentrant sur le H2O, principal produit de la combustion des hydrocarbures, ils ont validé cette méthode à l’aide de deux lignes d’absorption du H2O proches de 1343 nm et 1392 nm dans une cellule d’absorption chauffée spécialement conçue. Les résultats ont démontré une résolution temporelle et des incertitudes des mesures de pression atteignant respectivement 50 μs et 3 %.

Mise au point d’une méthode de détection de la pression indépendante de la concentration pour le diagnostic de la combustion à haute température. Crédit : WANG Ruifeng

« Notre découverte offre un outil précieux pour la détection de la pression dans des environnements à haute température et peut favoriser le développement de diagnostics multi-paramètres basés sur le laser pour la science de la combustion », a déclaré le professeur LIU Kun.

En synthèse

Pour une meilleure compréhension

Qu’est-ce que la spectroscopie d’absorption laser à deux couleurs ?

Il s’agit d’une technique de mesure qui utilise deux longueurs d’onde laser pour analyser la composition d’un milieu, permettant de surmonter les limitations posées par les variations de concentration des molécules.

Pourquoi la mesure de la pression est importante dans les moteurs aéronautiques ?

La pression est un paramètre clé pour évaluer les performances et détecter les anomalies des moteurs, influençant directement l’efficacité thermodynamique et la sécurité du vol.

Quels sont les avantages de cette nouvelle méthode ?

Elle offre une mesure précise et non intrusive de la pression sans être affectée par la température élevée ou la concentration des molécules dans le milieu de combustion.

Comment cette découverte influence-t-elle la science de la combustion ?

Elle ouvre la voie à des diagnostics plus précis et à une meilleure compréhension des processus de combustion, essentiels pour optimiser les performances des moteurs et réduire les émissions polluantes.

Quelles sont les perspectives d’application de cette recherche ?

Outre les moteurs aéronautiques, cette technologie pourrait être appliquée dans divers domaines nécessitant des mesures précises de la pression dans des conditions de haute température, comme dans les réacteurs chimiques ou les centrales énergétiques.

Références

Article : “Pressure sensing with two-color laser absorption spectroscopy for combustion diagnostics” – DOI: https://doi.org/10.1364/OL.506204

[ Rédaction ]

Articles connexes