L’informatique franchit une nouvelle étape grâce à une découverte majeure dans le domaine de la photonique. Des chercheurs de l’Université Julius-Maximilians de Würzburg, en collaboration avec l’Université du Danemark du Sud, ont réalisé une avancée significative dans la modulation des antennes lumineuses, ouvrant la voie à des puces informatiques considérablement plus rapides.
Les composants semi-conducteurs atteignent leurs limites physiques en termes de vitesse. Une fréquence maximale utilisable de quelques gigahertz est généralement observée, correspondant à plusieurs milliards d’opérations de calcul par seconde. Face à cette contrainte, les systèmes modernes s’appuient sur plusieurs puces pour répartir les tâches de calcul.
L’utilisation de la lumière (photons) au lieu de l’électricité (électrons) dans les puces informatiques pourrait permettre d’atteindre des vitesses jusqu’à 1000 fois supérieures. Les résonateurs plasmoniques, également appelés «antennes pour la lumière», représentent une voie prometteuse pour réaliser ce bond en avant.
Le Dr Thorsten Feichtner, physicien à l’Université Julius-Maximilians de Würzburg, a expliqué : «Les résonateurs plasmoniques ne peuvent pas encore être modulés efficacement, comme c’est le cas avec les transistors en électronique conventionnelle. Le développement de commutateurs rapides basés sur la lumière s’en trouve entravé.»
L’équipe de recherche a réussi à réaliser une modulation contrôlée électriquement. Au lieu de modifier l’ensemble du résonateur, les chercheurs se sont concentrés sur la modification de ses propriétés de surface. Cette avancée a été réalisée en contactant électriquement un seul résonateur, une nanotige en or.
Les mesures effectuées par les scientifiques ont révélé des changements dans la résonance qui ne peuvent plus être expliqués en termes classiques. Les électrons s’étendent au-delà de la frontière entre le métal et l’air, créant une transition douce et graduée.
Pour expliquer ces effets quantiques, des théoriciens ont développé un modèle semi-classique. Luka Zurak, physicien de l’Université Julius-Maximilians et premier auteur de l’étude, a ajouté : «En perturbant les fonctions de réponse de la surface, nous combinons les effets classiques et quantiques, créant un cadre unifié qui fait progresser notre compréhension des effets de surface.»
L’étude ouvre la voie à la conception spécifique de nouvelles antennes et à l’exclusion ou l’amplification d’effets quantiques individuels. À long terme, les chercheurs envisagent des applications encore plus vastes. Des résonateurs plus petits promettent des modulateurs optiques à haute efficacité, qui pourraient être utilisés technologiquement.
L’influence des électrons de surface dans les processus catalytiques peut également être étudiée avec le système présenté. De nouvelles connaissances sur les technologies de conversion et de stockage de l’énergie pourraient en découler.
Légende illustration : Impression d’artiste d’une antenne optique à contact électrique (à gauche) et de la distribution mécanique quantique de ses électrons de surface. La distribution normale est représentée en jaune, tandis que le changement induit par une tension appliquée est représenté en rouge. Crédit : Thorsten Feichtner / University of Wuerzburg
Article : ‘Electrical modulation of surface response in a single plasmonic nanoresonator’ / ( 10.1126/sciadv.adn5227 ) – University of Würzburg – Publication dans la revue Science Advances