Dans l’univers des circuits intégrés photoniques, les photons remplacent les électrons pour réaliser une multitude de calculs. Cette technologie, basée sur le silicium apporterait de nettes améliorations dans les centres de données, l’intelligence artificielle, l’informatique quantique et bien plus encore.
Le domaine des circuits intégrés photoniques se concentre sur la miniaturisation des éléments photoniques et leur intégration dans des puces photoniques. Ces circuits réalisent une gamme de calculs en utilisant des photons, plutôt que des électrons comme dans les circuits électroniques.
La photonique à base de silicium
La photonique à base de silicium est un domaine en développement qui est pertinent pour les centres de données, l’intelligence artificielle, l’informatique quantique, et plus encore. Elle permet une amélioration considérable des performances des puces, ainsi que de leur rapport coût-bénéfice, car elle est basée sur la même matière première prédominante que celle des puces dans le monde de l’électronique.
Les défis de la production
Malgré les avantages du processus de production par lithographie bien développé, qui permet une production précise des dispositifs souhaités, les instruments ne permettent pas encore une cartographie précise des caractéristiques optiques de la puce.
Cela comprend son mouvement de lumière interne – une capacité cruciale étant donné la difficulté de modéliser l’effet des défauts de fabrication et des imprécisions – en raison des dimensions minuscules des dispositifs.

… l’imagerie de la lumière dans les circuits photoniques
Un nouvel article de chercheurs de la Faculté d’ingénierie électrique et informatique Andrew et Erna Viterbi du Technion aborde ce défi, en montrant une imagerie avancée de la lumière dans les circuits photoniques sur puces.
La recherche, qui a été publiée dans la revue Optica, a été dirigée par le professeur Guy Bartal, responsable du Laboratoire de recherche avancée en photonique, et l’étudiant en doctorat Matan Iluz, en collaboration avec le groupe de recherche du professeur Amir Rosenthal. Les étudiants diplômés Kobi Cohen, Jacob Kheireddine, Yoav Hazan et Shai Tsesses ont également participé à la recherche.
Les chercheurs ont exploité les caractéristiques optiques du silicium pour cartographier la propagation de la lumière sans nécessiter une action invasive de quelque sorte que ce soit, qui perturbe ou modifie la puce. Ce processus comprend la cartographie du champ électrique des ondes lumineuses et la définition des éléments qui affectent le mouvement de la lumière – guides d’ondes et diviseurs de faisceau.

Conception, production et optimisation des puces photoniques
Le processus développé par les chercheurs du Technion fournit des images en temps réel et des enregistrements vidéo de la lumière à l’intérieur de la puce photonique, sans avoir à endommager la puce et sans perdre de données. Ce nouveau processus devrait améliorer la conception, la production et les processus d’optimisation des puces photoniques dans une variété de domaines, dont les télécommunications, l’informatique haute performance, l’apprentissage automatique, la mesure des distances, l’imagerie médicale, la détection et l’informatique quantique.
La recherche est soutenue par le Helen Diller Quantum Center au Technion, le Microelectronics and Nanoelectronics Research Center au Technion, et l’Académie des sciences et des humanités d’Israël.