mercredi, décembre 10, 2025
  • Connexion
Enerzine.com
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
    • Electricité
    • Marché Energie
    • Nucléaire
    • Pétrole
    • Gaz
    • Charbon
  • Renouvelable
    • Biogaz
    • Biomasse
    • Eolien
    • Géothermie
    • Hydro
    • Hydrogène
    • Solaire
  • Technologie
    • Batterie
    • Intelligence artificielle
    • Matériaux
    • Quantique
    • Recherche
    • Robotique
    • Autres
      • Chaleur
      • Communication
      • Fusion
      • Graphène
      • Impression
      • Industrie énergie
      • Industrie technologie
      • Laser
      • Nanotechnologie
      • Optique
  • Environnement
    • Carbone
    • Circulaire
    • Climat
    • Déchets
    • Durable
    • Risques
    • Santé
  • Mobilité
    • Aérien
    • Infrastructure
    • Logistique
    • Maritime
    • Spatial
    • Terrestre
  • Habitat
  • Insolite
  • GuideElectro
    • Sommaire
    • Maison
    • Chauffage
    • Bricolage
    • Jardin
    • Domotique
    • Autres
      • Isolations
      • Eclairage
      • Nomade
      • Loisir
      • Compostage
      • Médical
  • LaboFUN
    • Science
    • Lévitation
    • Globe
Aucun résultat
Voir tous les résultats
Enerzine.com
Aucun résultat
Voir tous les résultats
Les électrodes à nanotubes creux améliorent les performances des batteries potassium-ion

Les électrodes à nanotubes creux améliorent les performances des batteries potassium-ion

par La rédaction
28 octobre 2023
en Batterie, Technologie

Dans la quête incessante de solutions de stockage d’énergie plus efficaces et plus durables, les chercheurs se tournent vers une nouvelle technologie prometteuse : les batteries à ions potassium. Ces batteries fonctionnent de manière similaire aux batteries lithium-ion largement utilisées aujourd’hui, mais avec un avantage clé : le potassium est une ressource abondante.

Le développement à grande échelle de ces batteries a toutefois été entravé par des problèmes liés au rayon ionique du potassium, qui affectent le stockage de l’énergie et la performance électrochimique.

Une solution potentielle : NiCo2Se4

Face à ce défi, les chercheurs envisagent d’utiliser le NiCo2Se4, un séléniure bimétallique, pour créer des électrodes en forme de sphères. Ces sphères sont construites avec des nanotubes de NiCo2Se4, qui améliorent la réactivité électrochimique pour un transfert et un stockage plus rapides des ions potassium.

« Les séléniures bimétalliques combinent les caractéristiques améliorantes de deux métaux, qui se synergisent en montrant de nombreux sites de réaction redox et une haute activité électrochimique. Un séléniure bimétallique, le NiCo2Se4, a été précédemment étudié pour le stockage du sodium, les supercondensateurs, et les électrocatalyseurs et présente un potentiel considérable pour le stockage des ions potassium. En synthétisant le NiCo2Se4 à l’aide d’un processus hydrothermal en deux étapes, une structure de nanotubes avec des grappes en forme de fleurs se développe, créant des canaux pratiques pour le transfert d’ions potassium/électrons », a expliqué Mingyue Wang, chercheur au Centre de recherche en ingénierie des matériaux et dispositifs de stockage d’énergie à l’Université de Xi’an Jiaotong en Chine.

Le processus de création des nanotubes

Initialement, des sphères précurseurs Ni-Co avec des nano-aiguilles solides sont préparées. Ces sphères ont une structure cristalline bien définie qui est ensuite exposée au sélénium lors d’un processus appelé sélénisation. Ce processus introduit le sélénium dans le précurseur Ni-Co, développant la coquille de nanotubes NiCo2Se4.

Ce graphique comprend un diagramme montrant la structure des sphères de nanotubes NiCo2Se4 qui ont été utilisées pour créer des anodes pour les batteries potassium-ion. Il comprend également un graphique montrant l’amélioration des performances des batteries potassium-ion construites avec les sphères de nanotubes NiCo2Se4. Credit : Energy Materials and Devices, Tsinghua University Press

Les tubes creux se forment en raison d’un phénomène appelé l’effet Kirkendall, qui est lorsque deux métaux se déplacent en raison de la différence dans les taux de diffusion de leurs atomes. Ces nanotubes ont une largeur d’environ 35 nanomètres, offrant suffisamment d’espace pour le transfert des ions potassium et des électrons.

Des performances prometteuses

Grâce à une variété de tests et d’analyses, les chercheurs ont pu confirmer l’efficacité des anodes NiCo2Se4 pour le mouvement et le stockage des ions potassium et des électrons. Ils ont découvert que le NiCo2Se4 a plus de sites actifs que d’autres matériaux d’électrodes, avait des éléments uniformément répartis, et a surpassé d’autres électrodes qui ont été testées lors de la recherche.

En synthèse

Les résultats de cette recherche sont prometteurs pour le développement de batteries à ions potassium plus efficaces. Le NiCo2Se4 a démontré une meilleure performance électrochimique en termes de stabilité cyclique et de capacité de débit que d’autres électrodes testées, y compris Ni3Se4 et Co3Se4. Cela est dû à la structure unique en nanotubes du NiCo2Se4 et à la synergie offerte par la co-présence de deux métaux.

Articles à explorer

Le chlore et le potassium nécessaires à la formation des planètes et au maintien de la vie proviennent des étoiles qui explosent.

D’où viennent les éléments chimiques ?

9 décembre 2025
Développement de cellules lithium-air empilées de classe 1 Wh

Développement de batteries lithium-air empilées de classe 1 Wh

24 novembre 2025

De plus, le NiCo2Se4 a également montré une capacité plus élevée, ce qui est très bénéfique pour maintenir une stabilité cyclique et une performance à haut débit. «Ce travail offre de nouvelles perspectives dans la conception de séléniures de métaux binaires micro/nano-structurés comme anodes pour les batteries à ions potassium avec une performance extraordinaire de stockage des ions potassium», a conclu Mingyue Wang.

Pour une meilleure compréhension

Qu’est-ce que le NiCo2Se4 et pourquoi est-il important ?

Le NiCo2Se4 est un séléniure bimétallique qui a été identifié comme un matériau prometteur pour les électrodes de batteries à ions potassium. Sa structure unique en nanotubes offre une meilleure réactivité électrochimique pour un transfert et un stockage plus rapides des ions potassium.

Comment sont créés les nanotubes de NiCo2Se4 ?

Les nanotubes de NiCo2Se4 sont créés à partir de sphères précurseurs Ni-Co avec des nano-aiguilles solides. Ces sphères sont ensuite exposées au sélénium lors d’un processus appelé sélénisation, qui développe la coquille de nanotubes NiCo2Se4.

Qu’est-ce que l’effet Kirkendall ?

L’effet Kirkendall est un phénomène qui se produit lorsque deux métaux se déplacent en raison de la différence dans les taux de diffusion de leurs atomes. C’est ce qui permet la formation de tubes creux dans la structure des nanotubes de NiCo2Se4.

Comment les performances du NiCo2Se4 ont-elles été évaluées ?

Les chercheurs ont effectué une variété de tests et d’analyses pour évaluer l’efficacité des anodes NiCo2Se4 pour le mouvement et le stockage des ions potassium et des électrons. Ils ont découvert que le NiCo2Se4 a plus de sites actifs que d’autres matériaux d’électrodes, avait des éléments uniformément répartis, et a surpassé d’autres électrodes qui ont été testées lors de la recherche.

Quelles sont les implications de cette recherche ?

Les résultats de cette recherche sont prometteurs pour le développement de batteries à ions potassium plus efficaces. Le NiCo2Se4 a démontré une meilleure performance électrochimique en termes de stabilité cyclique et de capacité de débit que d’autres électrodes testées, y compris Ni3Se4 et Co3Se4.

Article : « Conversion mechanism of NiCo2Se4 nanotube sphere anodes for potassium-ion batteries » (Mécanisme de conversion des anodes à sphère de nanotubes NiCo2Se4 pour les batteries ions-potassium) – DOI: 10.26599/EMD.2023.9370001

Partager l'article avec :
  WhatsApp   LinkedIn   Facebook   Telegram   Email
Tags: batterieionsnanotubeNiCo2Se4potassiumselenisation
Article précédent

La fluorescence au service de la détection des polluants (PFAS)

Article suivant

Une turbine de la taille d’un bureau pour alimenter jusqu’à 10 000 foyers

La rédaction

La rédaction

Enerzine.com propose une couverture approfondie des innovations technologiques et scientifiques, avec un accent particulier sur : - Les énergies renouvelables et le stockage énergétique - Les avancées en matière de mobilité et transport - Les découvertes scientifiques environnementales - Les innovations technologiques - Les solutions pour l'habitat Les articles sont rédigés avec un souci du détail technique tout en restant accessibles, couvrant aussi bien l'actualité immédiate que des analyses. La ligne éditoriale se concentre particulièrement sur les innovations et les avancées technologiques qui façonnent notre futur énergétique et environnemental, avec une attention particulière portée aux solutions durables et aux développements scientifiques majeurs.

A lire également

Empreinte écologique réduite : les minerais extraits en eaux profondes (à gauche) peuvent être réduits à l'aide d'un plasma d'hydrogène dans un arc électrique.
Matériaux

Des métaux respectueux du climat issus des minerais des grands fonds marins

il y a 3 heures
Frequency comb converted into light by a cell with Rubidium atoms. (Image authors: Mateusz Mazelanik University of Warsa
Quantique

Un détecteur à atomes de Rydberg conquiert une nouvelle frontière spectrale

il y a 6 heures
Développement de jambes OCTOID remplissant des fonctions de camouflage
Robotique

« OCTOID », un robot mou qui change de couleur et se déplace comme une pieuvre

il y a 1 jour
Le chlore et le potassium nécessaires à la formation des planètes et au maintien de la vie proviennent des étoiles qui explosent.
Recherche

D’où viennent les éléments chimiques ?

il y a 1 jour
Microstructures hydrogel sensibles à la lumière intégrées dans un réseau de collagène. La microstructure au premier plan est il
Recherche

Des microstructures d’hydrogel permettent d’appliquer des forces sur les systèmes cellulaires

il y a 1 jour
Schematic figure of rapid (~100 ps) non-thermal switching of magnetization in antiferromagnetic Mn 3 Sn (to be precise,
Matériaux

Un clin d’œil et vous le manquerez : la commutation du magnétisme dans les antiferromagnétiques

il y a 1 jour
Plus d'articles
Article suivant
Une turbine de la taille d'un bureau pour alimenter jusqu'à 10 000 foyers

Une turbine de la taille d'un bureau pour alimenter jusqu'à 10 000 foyers

La technologie qui pourrait mettre fin aux incendies de batteries

La technologie qui pourrait mettre fin aux incendies de batteries

COSMOS : 5 ans pour développer le logiciel universel de simulation quantique

COSMOS : 5 ans pour développer le logiciel universel de simulation quantique

Bibliothèque photos préférée : Depositphotos.com
depositphotos
Enerzine est rémunéré pour les achats éligibles à la plateforme AMAZON

Articles récents

SPIE prolonge son contrat de gestion technique du campus d'affaires de Francfort

SPIE prolonge son contrat de gestion technique du campus d’affaires de Francfort

10 décembre 2025
Empreinte écologique réduite : les minerais extraits en eaux profondes (à gauche) peuvent être réduits à l'aide d'un plasma d'hydrogène dans un arc électrique.

Des métaux respectueux du climat issus des minerais des grands fonds marins

10 décembre 2025
  • A propos
  • Newsletter
  • Publicité – Digital advertising
  • Mentions légales
  • Confidentialité
  • Contact

© 2025 Enerzine.com

Bienvenue !

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Aucun résultat
Voir tous les résultats
  • Accueil
  • Energie
  • Renouvelable
  • Technologie
  • Environnement
  • Mobilité
  • Habitat
  • Insolite
  • Guide
  • Labo

© 2025 Enerzine.com