Les supersolides sont une nouvelle forme de matière quantique qui n’a été démontrée que récemment. Cet état de la matière peut être produit artificiellement dans des gaz quantiques dipolaires ultrafroids. Une équipe dirigée par Francesca Ferlaino, physicienne à Innsbruck, vient de démontrer une caractéristique manquante de la superfluidité, à savoir l’existence de tourbillons quantifiés en réponse à la rotation du système. Ils ont observé de minuscules tourbillons quantiques dans le supersolide, qui se comportent également différemment de ce qui avait été supposé auparavant.
Il semble impossible que la matière se comporte à la fois comme un solide et comme un superfluide. Pourtant, il y a plus de 50 ans, les physiciens ont prédit que la mécanique quantique permettait un tel état, où un ensemble de particules indiscernables peut présenter simultanément des propriétés apparemment contradictoires.
« C’est un peu comme le chat de Schrödinger, qui est à la fois vivant et mort, un supersolide est à la fois rigide et liquide », indique Francesca Ferlaino du département de physique expérimentale de l’université d’Innsbruck et de l’Institut d’optique quantique et d’information quantique (IQOQI) de l’Académie autrichienne des sciences (ÖAW). Alors que l’arrangement cristallin à l’origine de la nature « solide » des supersolides a été directement imagé, les propriétés superfluides sont beaucoup plus difficiles à cerner. Si les chercheurs ont étudié divers aspects du comportement superfluide, tels que la cohérence de phase et les modes de Goldstone sans lacunes, la preuve directe de l’une des caractéristiques essentielles de la superfluidité, à savoir les vortex quantifiés, est restée insaisissable.
Aujourd’hui, une avancée majeure a permis d’observer des tourbillons quantifiés dans un supersolide bidimensionnel en rotation, confirmant ainsi l’existence d’un écoulement superfluide irrotationnel dans un supersolide et marquant une étape décisive dans l’étude de la matière quantique modulée.
Une expérience difficile
Dans cette nouvelle étude, les scientifiques ont combiné des modèles théoriques et des expériences de pointe pour créer et observer des tourbillons dans des supersolides dipolaires, un exploit qui s’est avéré extraordinairement difficile. L’équipe d’Innsbruck avait déjà réalisé une percée en 2021 en créant le premier supersolide bidimensionnel de longue durée dans un gaz ultrafroid d’atomes d’erbium, ce qui était une tâche difficile en soi.
« L’étape suivante – la mise au point d’un moyen d’agiter le supersolide sans détruire son état fragile – exigeait une précision encore plus grande », explique Eva Casotti, auteur principal de l’étude. À l’aide de techniques de haute précision guidées par la théorie, les chercheurs ont utilisé des champs magnétiques pour faire tourner soigneusement le supersolide.
Comme les liquides ne tournent pas de manière rigide, cette agitation a entraîné la formation de tourbillons quantifiés, qui sont l’empreinte hydrodynamique de la superfluidité. « Ce travail constitue une avancée significative dans la compréhension du comportement unique des supersolides et de leurs applications potentielles dans le domaine de la matière quantique », remarque Francesca Ferlaino.
En outre, l’expérience a duré près d’un an, révélant des différences significatives entre la dynamique des tourbillons dans les supersolides et les fluides quantiques non modulés, et offrant un nouvel aperçu de la manière dont les caractéristiques superfluides et solides coexistent et interagissent dans ces états quantiques exotiques.
Explorer une nouvelle physique
Les implications de cette découverte vont bien au-delà du laboratoire et pourraient avoir un impact sur des domaines allant de la physique de la matière condensée à l’astrophysique, où des phases quantiques similaires peuvent exister dans des conditions extrêmes.
« Nos résultats ouvrent la voie à l’étude des propriétés hydrodynamiques des systèmes quantiques exotiques à symétries multiples brisées, tels que les cristaux quantiques et même les étoiles à neutrons », a déclaré Thomas Bland, qui a dirigé le développement théorique du projet. « Par exemple, on suppose que les changements de vitesse de rotation observés dans les étoiles à neutrons – appelés glitches – sont causés par des vortex superfluides piégés à l’intérieur des étoiles à neutrons. Notre plateforme offre la possibilité de simuler de tels phénomènes ici même sur Terre ». On pense que les tourbillons superfluides existent également dans les supraconducteurs, qui peuvent conduire l’électricité sans perte. »
Nos travaux constituent une étape importante sur la voie de la recherche d’une nouvelle physique », déclare Francesca Ferlaino. « Nous pouvons observer en laboratoire des phénomènes physiques qui ne se produisent dans la nature que dans des conditions très extrêmes, comme dans les étoiles à neutrons. »
Les travaux ont été publiés dans Nature et financés par le Fonds autrichien pour la science (FWF), l’Agence autrichienne de promotion de la recherche (FFG) et l’Union européenne.
Légende illustration : Simulation de vortex quantiques superposés à des données expérimentales.
Publication: Observation of vortices in a dipolar supersolid. Eva Casotti, Elena Poli, Lauritz Klaus, Andrea Litvinov, Clemens Ulm, Claudia Politi, Manfred J. Mark, Thomas Bland, and Francesca Ferlaino. Nature 2024 DOI: 10.1038/s41586-024-08149-7 [arXiv: 2403.18510]
Source : Innsbruck Université – Traduction Enerzine.com