Les collisions d’étoiles à neutrons binaires sont parmi les événements les plus énergétiques de l’univers. Grâce à des simulations numériques avancées, une équipe de chercheurs US a pu étudier en détail les processus physiques complexes qui se déroulent lors de ces collisions cosmiques. Leurs résultats, publiés dans la revue Physical Reviews Letters, apportent un nouvel éclairage sur le rôle des neutrinos dans ces phénomènes extrêmes.
Des étoiles à neutrons aux propriétés extrêmes
Les étoiles à neutrons sont les vestiges denses et compacts d’étoiles massives après leur effondrement. Malgré leur taille relativement modeste, de l’ordre de quelques dizaines de kilomètres, elles concentrent une masse supérieure à celle du Soleil. Cette densité extraordinaire est à l’origine de conditions physiques uniques, où les protons et les électrons fusionnent pour former des neutrons.
Lorsque deux étoiles à neutrons orbitent l’une autour de l’autre, elles finissent par entrer en collision. L’interface où les deux astres entrent en contact atteint alors des températures de plusieurs billions de degrés Kelvin. Cependant, en raison de leur densité extrême, les photons restent piégés et ne peuvent dissiper efficacement cette chaleur.
Le rôle crucial des neutrinos dans les collisions d’étoiles à neutrons
Les simulations réalisées par l’équipe de Penn State ont mis en évidence le rôle essentiel des neutrinos dans le refroidissement des étoiles à neutrons en collision. Ces particules élémentaires, quasiment sans masse et interagissant très peu avec la matière ordinaire, sont créées en abondance lors des chocs entre les neutrons des étoiles.
Pedro Luis Espino, chercheur postdoctoral à Penn State et à l’Université de Californie à Berkeley, qui a dirigé cette étude, explique : «Nos simulations montrent que pendant une brève période de 2 à 3 millisecondes, les neutrinos chauds restent piégés à l’interface des étoiles en collision. Ils sont alors hors d’équilibre avec les cœurs encore froids des étoiles et peuvent interagir faiblement avec leur matière, contribuant ainsi à rétablir l’équilibre thermique.»
Des simulations numériques pour sonder les limites de la physique
David Radice, professeur assistant de physique et d’astronomie à Penn State et co-auteur de l’étude, souligne l’importance des simulations numériques pour étudier ces phénomènes extrêmes : «Il est impossible de reproduire en laboratoire les conditions d’une collision d’étoiles à neutrons. Les simulations basées sur la théorie de la relativité générale d’Einstein sont donc notre meilleure fenêtre pour comprendre ces événements.»
Les chercheurs ont dû mobiliser une puissance de calcul considérable pour modéliser fidèlement la fusion des étoiles à neutrons et l’ensemble des processus physiques associés. Leurs résultats mettent en lumière la brève phase hors d’équilibre, cruciale pour appréhender la physique de ces collisions cosmiques.
Des implications pour les observations astronomiques futures
Les interactions précises entre les neutrinos et la matière des étoiles lors de leur fusion ont des répercussions sur les signaux électromagnétiques et gravitationnels qui parviennent jusqu’à la Terre. Les oscillations des vestiges de la collision, en particulier, sont influencées par la manière dont les neutrinos sont émis.
Selon Pedro Luis Espino, «les détecteurs d’ondes gravitationnelles de nouvelle génération pourraient être conçus pour rechercher ces différences subtiles dans les signaux. Ainsi, nos simulations jouent un rôle essentiel en éclairant ces événements extrêmes et en orientant les expériences et les observations futures, dans une sorte de boucle de rétroaction.»
La première détection d’ondes gravitationnelles issues d’une collision d’étoiles à neutrons, réalisée en 2017, a suscité un vif intérêt pour l’étude de ces phénomènes. Grâce à des simulations numériques toujours plus performantes, les astrophysiciens espèrent percer les secrets de ces événements cataclysmiques et repousser les limites de notre compréhension de l’univers.
Légende illustration : Rendu volumique de la densité dans une simulation de fusion d’étoiles binaires à neutrons. De nouvelles recherches montrent que les neutrinos créés dans l’interface chaude entre les étoiles en fusion peuvent être brièvement piégés et rester en déséquilibre avec les noyaux froids des étoiles en fusion pendant 2 à 3 millisecondes. Source : David Radice / Penn State. Creative Commons