L’émergence de l’enchevêtrement quantique est l’un des processus les plus rapides de la nature. Des scientifiques de l’Université technique de Vienne (TU Wien) ont montré qu’en utilisant des astuces spéciales, il est possible d’étudier ce phénomène à l’échelle de l’attoseconde.
La théorie quantique décrit des événements qui se déroulent sur des échelles de temps extrêmement courtes. Dans le passé, ces événements étaient considérés comme « momentanés » ou « instantanés » : Un électron gravite autour du noyau d’un atome et, l’instant d’après, il est soudainement arraché par un éclair de lumière. Deux particules entrent en collision et, l’instant d’après, elles sont soudainement « enchevêtrées ».
Aujourd’hui, il est possible d’étudier l’évolution temporelle de ces effets presque « instantanés ». En collaboration avec des équipes de recherche chinoises, la TU Wien (Vienne) a mis au point des simulations informatiques permettant de simuler des processus ultrarapides. Il est ainsi possible de découvrir comment l’intrication quantique se produit sur une échelle de temps de l’ordre de l’attoseconde.
Deux particules – un objet quantique
Si deux particules sont enchevêtrées, il est absurde de les décrire séparément. Même si l’on connaît parfaitement l’état de ce système à deux particules, il est impossible de se prononcer clairement sur l’état d’une seule particule. « On pourrait dire que les particules n’ont pas de propriétés individuelles, mais seulement des propriétés communes. D’un point de vue mathématique, elles sont intimement liées, même si elles se trouvent dans deux endroits complètement différents », explique le professeur Joachim Burgdörfer de l’Institut de physique théorique de l’Université technique de Vienne (TU Wien).
Lors d’expériences avec des particules quantiques intriquées, les scientifiques souhaitent généralement maintenir cette intrication quantique le plus longtemps possible, par exemple s’ils veulent utiliser l’intrication quantique pour la cryptographie quantique ou les ordinateurs quantiques. « Nous, en revanche, nous nous intéressons à autre chose : nous cherchons à savoir comment cette intrication se développe et quels effets physiques jouent un rôle sur des échelles de temps extrêmement courtes », explique le professeur Iva Březinová, l’un des auteurs de la présente publication.
Un électron s’envole, l’autre reste dans l’atome
Les chercheurs ont examiné des atomes frappés par une impulsion laser extrêmement intense et à haute fréquence. Un électron est arraché à l’atome et s’envole. Si le rayonnement est suffisamment puissant, il est possible qu’un deuxième électron de l’atome soit également affecté : Il peut être déplacé dans un état d’énergie plus élevé et se mettre en orbite autour du noyau atomique sur une trajectoire différente.
Ainsi, après l’impulsion laser, un électron s’envole et un autre reste dans l’atome avec une énergie inconnue. « Nous pouvons montrer que ces deux électrons sont désormais quantiquement intriqués », explique Joachim Burgdörfer. « On ne peut les analyser qu’ensemble – et on peut effectuer une mesure sur l’un des électrons et apprendre en même temps quelque chose sur l’autre électron. »
L’électron lui-même ne sait pas quand il est né
L’équipe de recherche a maintenant pu montrer, à l’aide d’un protocole de mesure approprié combinant deux faisceaux laser différents, qu’il est possible de parvenir à une situation dans laquelle l’« heure de naissance » de l’électron qui s’envole, c’est-à-dire le moment où il a quitté l’atome, est liée à l’état de l’électron qui reste sur place. Ces deux propriétés sont enchevêtrées au niveau quantique.
« Cela signifie que l’heure de naissance de l’électron qui s’envole n’est pas connue en principe. On pourrait dire que l’électron lui-même ne sait pas quand il a quitté l’atome », explique Joachim Burgdörfer. « Il se trouve dans une superposition quantique et physique de différents états. Il a quitté l’atome à la fois à un moment antérieur et à un moment postérieur ».
Il n’est pas possible de savoir à quel moment il s’est « réellement » produit, car la réponse « réelle » à cette question n’existe tout simplement pas en physique quantique. Mais la réponse est liée, sur le plan de la physique quantique, à l’état – également indéterminé – de l’électron restant dans l’atome : Si l’électron restant est dans un état d’énergie plus élevé, il est plus probable que l’électron qui s’est envolé ait été arraché à un moment précoce ; si l’électron restant est dans un état d’énergie plus faible, le « moment de naissance » de l’électron libre qui s’est envolé a probablement été plus tardif – en moyenne environ 232 attosecondes.
Il s’agit d’un laps de temps d’une brièveté presque inimaginable : une attoseconde correspond à un milliardième de milliardième de seconde. « Cependant, ces différences peuvent être non seulement calculées, mais aussi mesurées lors d’expériences », explique Joachim Burgdörfer. « Nous sommes déjà en pourparlers avec des équipes de recherche qui souhaitent prouver l’existence de telles intrications ultrarapides. »
La structure temporelle des événements « instantanés
Les travaux montrent qu’il ne suffit pas de considérer les effets quantiques comme « instantanés » : Les corrélations importantes ne deviennent visibles que lorsque l’on parvient à résoudre les échelles de temps ultra-courtes de ces effets. « L’électron ne saute pas simplement de l’atome. C’est une onde qui se répand hors de l’atome, pour ainsi dire, et cela prend un certain temps », explique Iva Březinová. « C’est précisément au cours de cette phase que se produit l’intrication, dont l’effet peut ensuite être mesuré avec précision en observant les deux électrons. »
Légende illustration : Un atome est touché par une impulsion laser. Un électron est arraché de l’atome, un autre électron est déplacé vers un état à plus haute énergie.
W. Jiang et al., Time Delays as Attosecond Probe of Interelectronic Coherence and Entanglement, Phys. Rev. Lett. 133, 163201.
Source : TU Wien – Traduction Enerzine.com