Une nouvelle étude met en lumière une augmentation quadruple de la durée de vie des batteries pour avions électriques grâce à une solution d’électrolyte innovante découverte par une technique de biosciences.
Pour comprendre pourquoi les batteries d’avions électriques perdent de la puissance au fil du temps, une approche utilisée depuis des décennies par les biologistes pour étudier la structure et la fonction des composants des organismes vivants a été adoptée. Les techniques omiques, qui ont aidé les scientifiques à percer les secrets du génome humain, pourraient également jouer un rôle clé dans la réalisation du transport aérien sans carbone.
Dans une nouvelle étude publiée dans le journal Joule, une équipe de chercheurs dirigée par le Lawrence Berkeley National Laboratory (Berkeley Lab) des États-Unis a utilisé des techniques omiques pour étudier les interactions complexes au sein de l’anode, de la cathode et de l’électrolyte des batteries d’avions électriques. Une découverte majeure a été que certains sels mélangés à l’électrolyte de la batterie formaient un revêtement protecteur sur les particules de cathode, les rendant beaucoup plus résistantes à la corrosion, améliorant ainsi la durée de vie de la batterie.
Collaboration et résultats prometteurs
L’équipe de recherche, composée de scientifiques de l’Université de Californie à Berkeley, de l’Université du Michigan et de partenaires industriels ABA (Palo Alto, CA) et 24M (Cambridge, MA), a conçu et testé une batterie pour avion électrique utilisant leur nouvelle solution d’électrolyte.
La batterie a montré une augmentation quadruple du nombre de cycles pendant lesquels elle pouvait maintenir le rapport puissance-énergie nécessaire pour le vol électrique, comparée aux batteries conventionnelles.
La prochaine étape du projet sera de produire suffisamment de batteries (environ 100 kWh de capacité totale) pour un vol d’essai prévu en 2025.
Défis uniques du vol électrique
Contrairement aux batteries de véhicules électriques, qui privilégient une énergie soutenue sur de longues distances, les batteries d’avions électriques doivent relever le défi unique de besoins en puissance élevés pour le décollage et l’atterrissage, combinés à une haute densité énergétique pour des vols prolongés.
« Dans un véhicule électrique, on se concentre sur la diminution de la capacité au fil du temps », a souligné Youngmin Ko, chercheur postdoctoral au Berkeley Lab et auteur principal de l’étude. « Mais pour les avions, c’est la diminution de la puissance qui est critique – la capacité à atteindre constamment une haute puissance pour le décollage et l’atterrissage. »
Découvertes et implications futures
Les chercheurs ont concentré leur analyse sur des batteries au lithium métal avec des oxydes en couches à haute tension et haute densité contenant du nickel, du manganèse et du cobalt. Contrairement aux recherches antérieures, qui pensaient que le problème de la diminution de la puissance provenait de l’anode de la batterie, l’équipe a observé que la diminution de la puissance provenait principalement de la cathode. Les particules de la cathode se fissuraient et se corrodaient au fil du temps, entravant le mouvement de la charge et réduisant l’efficacité de la batterie. De plus, les chercheurs ont découvert que des électrolytes spécifiques pouvaient contrôler le taux de corrosion à l’interface de la cathode.
« C’était un résultat non évident », a indiqué Youngmin Ko. « Nous avons découvert que le mélange de sels dans l’électrolyte pouvait supprimer la réactivité des espèces généralement réactives, formant ainsi un revêtement stabilisant et résistant à la corrosion. »
Après avoir développé leur nouvel électrolyte, les chercheurs l’ont testé dans une batterie à haute capacité. Elle a montré une excellente rétention de puissance en utilisant une mission réaliste pour le décollage et l’atterrissage verticaux électriques.
L’équipe espère que les batteries seront produites pour le vol d’essai prévu en 2025 dans un prototype d’avion fabriqué par quatre partenaires eVTOL (décollage et atterrissage verticaux électriques) d’ici la fin de l’année.
Légende illustration : Brett Helms, scientifique principal à la Fonderie moléculaire, avec Youngmin Ko, chercheur postdoctoral, qui tient une batterie à pile bouton utilisée dans le cadre de cette recherche. Crédit : Jeremy Demarteau/Berkeley Lab
Article : « Omics-enabled understanding of electric aircraft battery electrolytes » : DOI: 10.1016/j.joule.2024.05.013